98%
921
2 minutes
20
Covalent organic frameworks (COFs) are promising crystalline materials for photocatalytic solar- to hydrogen-energy conversion due to the tunable chemical structures and energy band gaps. Herein, we report a chemical modification strategy for improving the photocatalytic activity of COFs. A benzene-1,3,5-tricarbaldehyde (BT)- and benzothiadiazole derivative-based two-dimensional donor-acceptor (D-A) COF, denoted as BT-COF, were fabricated and further modified by using an alternative electron-donating unit, 2-hydroxybenzene-1,3,5-tricarbaldehyde (HBT), to the polycondensation reaction, yielding HBT-COF with an enhanced internal D-A effect and hydrophilicity. Interestingly, the photocatalytic H production rate of HBT-COF reaches 19.00 μmol h, which is 5 times higher than that of BT-COF (3.40 μmol h) under visible light irradiation. The increase in photocatalytic activity of HBT-COF is rationally attributed to finely tuned energy levels and improved wettability, which in turn leads to broadened visible light absorption, efficient photoinduced charge separation and transfer, and enhanced interactions between the COF catalyst and reaction substrates. The present results demonstrate that a subtle structural modification can significantly modulate the band structure and interfacial property, thus providing a feasible strategy for the optimization of COF-based photocatalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c04880 | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.
View Article and Find Full Text PDFImmun Ageing
September 2025
Department of Biomedical Data Sciences, Molecular Epidemiology, LUMC, Leiden, The Netherlands.
The MetaboHealth score is an indicator of physiological frailty in middle aged and older individuals. The aim of the current study was to explore which molecular pathways co-vary with the MetaboHealth score. Using a Luminex cytokine assay and liquid chromatography-mass spectrometry-based proteomics we explored the plasma proteins associating with the difference in 100 extreme scoring individuals selected from two large population cohorts, the Leiden Longevity Study (LLS) and the Rotterdam Study (RS), and discordant monozygotic twin pairs from the Netherlands Twin Register (NTR).
View Article and Find Full Text PDFBMC Public Health
September 2025
Department of Mathematics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str.48, Kaiserslautern, 67663, Germany.
We study the dynamics of coexisting influenza and SARS-CoV-2 by adapting a well-established age-specific COVID-19 model to a multi-pathogen framework. Sensitivity analysis and adjustment of the model to real-world data are used to investigate the influence of age-related factors on disease dynamics. Our findings underscore the critical role that transmission rates play in shaping the spread of influenza and COVID-19.
View Article and Find Full Text PDFBMC Public Health
September 2025
Department of Social and Health Sciences in Sport, Bayreuth Center of Sport Science, University of Bayreuth, Bayreuth, Germany.
Background: Sedentary behavior (SB) and the absence of physical activity (PA) have become increasingly prevalent in modern societies due to changes in physical and social-environmental conditions, particularly in university students. This cross-sectional study aimed to describe and identify the prevalence and correlates of self-reported and accelerometer-determined SB and PA of German university students.
Methods: A convenience sample of 532 students participated in a questionnaire survey during the lecture period in the summer term 2018.
Mikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDF