Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2021.3085712DOI Listing

Publication Analysis

Top Keywords

challenge
5
dataset
5
monusac2020 multi-organ
4
multi-organ nuclei
4
nuclei segmentation
4
segmentation classification
4
classification challenge
4
challenge detecting
4
detecting types
4
types cells
4

Similar Publications

In wheat allergy dependent on augmentation factors (WALDA), allergic reactions occur when wheat ingestion is combined with exercise or rarely other augmentation factors. We analyzed clinical characteristics and disease burden in recreationally active and trained individuals with WALDA diagnosed by oral challenge test. Clinical characteristics, serological data, and quality of life (QOL) questionnaires were analyzed and completed with follow-up interviews.

View Article and Find Full Text PDF

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

Cardiac resynchronization therapy (CRT) improves outcomes in heart failure, but prior interventions like percutaneous mitral annuloplasty may hinder lead placement. We present a 70-year-old male with ischemic cardiomyopathy and severe functional mitral regurgitation who previously received a Carillon device. Due to coronary sinus inaccessibility, left bundle branch area pacing optimized cardiac resynchronization therapy (LOT-CRT) was performed.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF