Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder characterized by motor incoordination, paroxysmal dystonia, vertigo, nystagmus and more recently cognitive deficits. To date over 100 mutations in the CACNA1A gene have been identified in EA2 patients leading to a loss of P/Q-type channel activity, dysfunction of cerebellar Purkinje cells and motor incoordination. To determine if the cerebellum is contributing to these cognitive deficits, we examined two different EA2 mouse models for cognition impairments where CACNA1A was removed specifically from cerebellar Purkinje or granule cells postnatally. Both mutant mouse models showed anxiolytic behavior to lighted, open areas in the open field and light/dark place preference tests but enhanced anxiousness in the novel suppressed feeding test. However, EA2 mice continued to show augmented latencies in the light/dark preference test and when the arena was divided into two dark zones in the dark/dark preference test. Moreover, increased latencies were also displayed in the novel object recognition test, indicating that EA2 mice are indecisive and anxious to explore new territories and objects and may have memory recognition deficits. Exposure to a foreign mouse led to deficiencies in attention and sniffing as well as in social and genital sniffing. These data suggest that postnatal removal of the P/Q type calcium channel from the cerebellum regulates neuronal activity involved in anxiety, memory, decision making and social interactions. Our EA2 mice will provide a model to identify the mechanisms and therapeutic agents underlying cognitive and psychiatric disorders seen in EA2 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444449PMC
http://dx.doi.org/10.1093/hmg/ddab149DOI Listing

Publication Analysis

Top Keywords

cognitive deficits
12
mouse models
12
ea2 mice
12
episodic ataxia
8
ataxia type
8
motor incoordination
8
ea2 patients
8
cerebellar purkinje
8
preference test
8
ea2
7

Similar Publications

Photostimulation of locus coeruleus CA1 catecholaminergic terminals reversed Spatial memory impairment in an alzheimer's disease mouse model.

Psychopharmacology (Berl)

September 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.

Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.

View Article and Find Full Text PDF

Detection and pharmacokinetics of licochalcone A in brains of neuroinflammatory mouse model.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Gamal Abdel Nasser, 11835, New Cairo, Egypt.

Licochalcone A (LCA), a natural flavonoid with potent anti-inflammatory properties, has shown promise as a neuroprotective agent. However, its ability to cross the blood-brain barrier (BBB) and exert central effects remains underexplored. In this study, we demonstrate for the first time that LCA enhances cognitive function in a lipopolysaccharide (LPS)-induced neuroinflammatory mouse model and effectively penetrates the BBB.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.

Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.

View Article and Find Full Text PDF

Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.

View Article and Find Full Text PDF

Objective: Attention deficit hyperactivity disorder (ADHD) is linked to time perception deficits, with theories such as Scalar Expectancy Theory (SET) and Dynamic Attending Theory (DAT) offering different explanations. SET suggests time perception relies on a pacemaker-counter system influenced by working memory, whereas DAT highlights the role of attention in modulating time perception. This study examines the impact of attention, working memory, and motor response on time perception in children with ADHD.

View Article and Find Full Text PDF