98%
921
2 minutes
20
Human skin aging is affected by various biological signaling pathways, microenvironment factors and epigenetic regulations. With the increasing demand for cosmetics and pharmaceuticals to prevent or reverse skin aging year by year, designing multiple-molecule drugs for mitigating skin aging is indispensable. In this study, we developed strategies for systems medicine design based on systems biology methods and deep neural networks. We constructed the candidate genomewide genetic and epigenetic network (GWGEN) via big database mining. After doing systems modeling and applying system identification, system order detection and principle network projection methods with real time-profile microarray data, we could obtain core signaling pathways and identify essential biomarkers based on the skin aging molecular progression mechanisms. Afterwards, we trained a deep neural network of drug-target interaction in advance and applied it to predict the potential candidate drugs based on our identified biomarkers. To narrow down the candidate drugs, we designed two filters considering drug regulation ability and drug sensitivity. With the proposed systems medicine design procedure, we not only shed the light on the skin aging molecular progression mechanisms but also suggested two multiple-molecule drugs for mitigating human skin aging from young adulthood to middle age and middle age to old age, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197996 | PMC |
http://dx.doi.org/10.3390/molecules26113178 | DOI Listing |
Endocr Rev
September 2025
Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
Glycerol and glycerol-3-phosphate are key metabolites at the intersection of carbohydrate, lipid and energy metabolism. Their production and usage are organismal and cell type specific. Glycerol has unique physicochemical properties enabling it to function as an osmolyte, protein structure stabilizer, antimicrobial and antifreeze agent, important to preservation of many biological functions.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.
Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.
View Article and Find Full Text PDFJID Innov
November 2025
Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
Previous studies have revealed that skin T cells accumulate and maintain immune responses in the elderly. However, we questioned why these functional T cells fail to recognize and eliminate malignant cells, making elderly skin more prone to developing malignant tumors. To address this question, we examined the overall skin microenvironment in aging using the Nanostring nCounter system and 10x Xenium digital spatial RNA sequencing.
View Article and Find Full Text PDFClin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFSpinal Cord Ser Cases
September 2025
Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Study Design: Concurrent mixed methods case series.
Objectives: To examine the feasibility and effect of a peer-facilitated, remote handcycling sport program on physical, psychological, and social health of individuals with spinal cord injury or disease (SCI/D) aged ≥50 years.
Setting: Participants' homes.