Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lacking of laboratory black carbon (BC) samples have long challenged the corresponding toxicological research; furthermore, the toxicity tests of engineered carbon nanoparticles were unable to reflect atmospheric BC. As a simplified approach, we have synthesized artificial BC (aBC) for the purpose of representing atmospheric BC. Surface chemical properties of aBC were controlled by thermal treatment, without transforming its physical characteristics; thus, we were able to examine the toxicological effects on A549 human lung cells arising from aBC with varying oxidation surface properties. X-ray photoelectron spectroscopy, as well as Raman and Fourier transform infrared spectroscopy, verified the presence of increased amounts of oxygenated functional groups on the surface of thermally-treated aBC, indicating aBC oxidization at elevated temperatures; aBC with increased oxygen functional group content displayed increased toxicity to A549 cells, specifically by decreasing cell viability to 45% and elevating reactive oxygen species levels up to 294% for samples treated at 800 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229741PMC
http://dx.doi.org/10.3390/nano11061455DOI Listing

Publication Analysis

Top Keywords

black carbon
8
abc
6
relationship cytotoxicity
4
surface
4
cytotoxicity surface
4
surface oxidation
4
oxidation artificial
4
artificial black
4
carbon lacking
4
lacking laboratory
4

Similar Publications

With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.

View Article and Find Full Text PDF

To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.

View Article and Find Full Text PDF

Development of carbon black-percolated GaInSn liquid metal networks for high-sensitive electrochemical detection of diuron in environmental samples.

Food Chem

September 2025

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC. Electronic address:

Diuron (DU), a widely used herbicide, is persistent and toxic, posing serious environmental and health risks. Therefore, the development of advanced sensor materials for the sensitive detection of DU is urgently needed. Here, we present a simple, cost-effective ultrasonic-assisted method to fabricate a high-performance nanocomposite of carbon black (CB) and Ga-liquid metal (GaInSn), which is utilized to modify a carbon electrode (CB/GaInSn/SPCE) for developing an electrochemical sensor for DU detection.

View Article and Find Full Text PDF

Anaerobic methanotrophic archaea (ANME) are crucial to planetary carbon cycling. They oxidise methane in anoxic niches by transferring electrons to nitrate, metal oxides, or sulfate-reducing bacteria. No ANMEs have been isolated, hampering the biochemical investigation of anaerobic methane oxidation.

View Article and Find Full Text PDF

Mapping street-level air pollution: One year of mobile monitoring in disadvantaged communities across New York State.

J Air Waste Manag Assoc

September 2025

New York State Department of Environmental Conservation, Division of Air Resources, Albany, NY, USA.

New York State has enacted public policies that have enabled a multi-decadal trend in air quality improvement. However, the benefits of cleaner air are not felt equally across the populace, with individuals residing in disadvantaged communities bearing disproportionate air pollution burdens due to proximity of polluting sources, in addition to other environmental stressors. To address this disparity, the New York State Department of Environmental Conservation contracted with Aclima, Inc.

View Article and Find Full Text PDF