Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin.

Antibiotics (Basel)

Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a bacterium that belongs to the human microbiota. It is most plentiful on the skin, in the respiratory system, and in the human digestive tract. Moreover, it is the most frequently isolated microorganism belonging to the group of Coagulase Negative Staphylococci (CoNS). In recent years, it has been recognized as an important etiological factor of mainly nosocomial infections and infections related to the cardiovascular system. On the other hand, , responsible for in-hospital and out-of-hospital infections, is posing an increasing problem for clinicians due to its growing resistance to antibiotics. Biofilm produced by both of these staphylococcal species in the course of infection significantly impedes therapy. The ability to produce biofilm hinders the activity of chemotherapeutic agents-the only currently available antimicrobial therapy. This also causes the observed significant increase in bacterial resistance. For this reason, we are constantly looking for new substances that can neutralize microbial cells. In the present review, 58 substances of plant origin with antimicrobial activity against staphylococcal biofilm were replaced. Variable antimicrobial efficacy of the substances was demonstrated, depending on the age of the biofilm. An increase in the activity of the compounds occurred in proportion to increasing their concentration. Appropriate use of the potential of plant-derived compounds as an alternative to antibiotics may represent an important direction of change in the support of antimicrobial therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161300PMC
http://dx.doi.org/10.3390/antibiotics10050607DOI Listing

Publication Analysis

Top Keywords

staphylococcal biofilm
8
plant origin
8
antimicrobial therapy
8
biofilm
5
sensitivity staphylococcal
4
biofilm selected
4
selected compounds
4
compounds plant
4
origin bacterium
4
bacterium belongs
4

Similar Publications

Reprogramming resistance: phage-antibiotic synergy targets efflux systems in ESKAPEE pathogens.

mBio

September 2025

Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.

View Article and Find Full Text PDF

CHRFS5, HL_CHRU_S18, S48B, HL_CHRU_S16, S19, HL_CHRU_S79, and HL_CHRU_S111 were isolated from the biofilm of catheter tip of renal failure patients. Whole genome sequencing predicted the presence of multiple antibiotic-resistant gene cassettes.

View Article and Find Full Text PDF

() is one of the bacterial species capable of forming multilayered biofilms on implants. Such biofilms formed on implanted medical devices often require the removal of the implant in order to avoid sepsis or, in the worst case, even the death of the patient. To address the problem of unwanted biofilm formation, its first step, i.

View Article and Find Full Text PDF

The growing threat of antibiotic-resistant bacteria continues to be one of the biggest challenges facing public health. As a result, there is an increasing focus on developing new substances with both antimicrobial and biofilm inhibition activities. One such group of compounds is surfactants, particularly quaternary ammonium salts (QASs), which are commonly used as disinfectants in healthcare.

View Article and Find Full Text PDF

Although citrus essential oils, including lemongrass essential oil, have antibacterial, anti-biofilm, and antioxidant properties, their biological instability and poor water solubility render them unsuitable for industrial usage. Thus, this study aimed to prepare both lemongrass essential oil emulsion (LEO-E) and lemongrass essential oil nanoemulsion (LEO-NE), and evaluate their different bioactivities. Characterization by gas chromatography-mass spectroscopy (GC-MS) and evaluation of antimicrobial, antibiofilm, antioxidant, and anticancer activities were carried out.

View Article and Find Full Text PDF