98%
921
2 minutes
20
In recent years, the digital polymerase chain reaction has received increasing interest as it has emerged as a tool to provide more sensitive and accurate detection of minimal residual disease. In order to start the process of data alignment, we assessed the consistency of the BCR-ABL1 quantification results of the analysis of 16 RNA samples at different levels of disease. The results were obtained by two different laboratories that relied on The Qx100/Qx200 Droplet Digital PCR System (Bio-Rad) and Quant Studio 3D dPCR System (Thermofisher) platforms. We assessed the compatibility between the estimated values by linear regression, Bland-Altman bias-plot, and Mann-Whitney nonparametric test. The results confirmed the compatibility of the measures, allowing us tocompute an 'alignment factor' (AF), equal to 1.41, which was further validated by a different series of experiments. We conclude that the performed measurements by the two laboratories are comparable, and also equalized through the introduction of an alignment factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161814 | PMC |
http://dx.doi.org/10.3390/diseases9020035 | DOI Listing |
Diseases
May 2021
Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST SpedaliCivili di Brescia, 25123 Brescia, Italy.
In recent years, the digital polymerase chain reaction has received increasing interest as it has emerged as a tool to provide more sensitive and accurate detection of minimal residual disease. In order to start the process of data alignment, we assessed the consistency of the BCR-ABL1 quantification results of the analysis of 16 RNA samples at different levels of disease. The results were obtained by two different laboratories that relied on The Qx100/Qx200 Droplet Digital PCR System (Bio-Rad) and Quant Studio 3D dPCR System (Thermofisher) platforms.
View Article and Find Full Text PDFFood Chem
October 2019
Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia. Electronic address:
The increased use of genetically modified organisms (GMOs) is accompanied by increased complexity of the matrices that contain GMOs. The most common DNA-based approach for GMO detection and quantification is real-time quantitative polymerase chain reaction (qPCR). However, as qPCR is sensitive to inhibitors and relies on standard curves for quantification, it has limited application in GMO quantification for complex matrices.
View Article and Find Full Text PDF