Publications by authors named "Jessica Petiti"

Objective: The results of this research contribute to the LifeSaver project, which focuses on reducing neonatal and infant mortality resulting from preterm births. The project aims to create an in vitro system simulating prenatal conditions to screen and analyze chemicals and pharmaceuticals, establishing scientifically justified regulations for their use during pregnancy. Because several papers have recently identified data inconsistencies in pre-clinical studies, a key part of the project involves optimizing cellular cytotoxicity assays to enhance the reliability of pharmacological and toxicity screening for drugs and environmental contaminants.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is a complex ecosystem, encompassing a variety of cellular and non-cellular elements surrounding and interacting with cancer cells, overall promoting tumor growth, immune evasion, and therapy resistance. In the context of solid tumors, factors, such as hypoxia, nutritional competition, increased stress responses, glucose demand, and PD-1 signals strongly influence metabolic alterations in the TME, highly contributing to the maintenance of a tumor-supportive and immune-suppressive milieu. Cancer cell-induced metabolic alterations partly result in an increased fatty acid (FA) metabolism within the TME, which strongly favors the recruitment of immune-suppressive M2 macrophages and myeloid-derived suppressor cells, crucial contributors to T-cell exhaustion, tumor exclusion, and decreased effector functions.

View Article and Find Full Text PDF

Adrenocortical Carcinoma is a rare and aggressive endocrine malignancy, that arises from cells of one of the three cortical layers of the adrenal gland. Radical surgery is the only curative treatment, even if recurrence rates are high. Therapeutic options are limited, with mitotane as the cornerstone of medical therapy.

View Article and Find Full Text PDF

The A549 cell line has become a cornerstone in biomedical research, particularly in cancer studies and serves as a critical tool in cytotoxicity studies and drug screening where it is used to evaluate the impact of pharmaceutical compounds on cellular viability. One of the most widely adopted methods for viability assessment, which is also used in evaluating drug cytotoxicity, is the resazurin-based assay. This assay exploits the ability of living cells to convert resazurin into fluorescent resorufin, providing a reliable indicator of metabolic activity.

View Article and Find Full Text PDF

The dysregulation of miRNAs in lung cancer has been extensively documented, with specific miRNAs acting as both tumor suppressors and oncogenes, depending on their target genes. Recent research has unveiled the regulatory roles of miRNAs in key metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, fatty acid metabolism, and autophagy, which collectively contribute to the aberrant energy metabolism characteristic of cancer cells. Furthermore, miRNAs are increasingly recognized as critical modulators of the tumor microenvironment, impacting immune response and angiogenesis.

View Article and Find Full Text PDF

The resazurin assay, also known as the Alamar Blue assay, stands as a cornerstone technique in cell biology, microbiology, and drug development. It assesses the viability of cells through the conversion of resazurin into highly fluorescent resorufin. The resulting fluorescence intensity provides a reliable estimate of viable cell numbers.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a severe blood cancer, with around 30% of cases linked to mutations in the NPM1 gene, leading to a specific classification of NPM1-mutated AML that generally has a favorable prognosis but still faces a high relapse rate of 30-50%.
  • This study explored the use of total RNA sequencing (RNAseq) to better characterize NPM1-mutated AML, revealing complex molecular variations and different clonal types that previous methods might have missed, such as abnormal fusion transcripts.
  • The findings suggest that advanced technologies like RNAseq could improve risk assessment and treatment planning for patients with NPM1-mutated AML, laying the groundwork for
View Article and Find Full Text PDF

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields.

View Article and Find Full Text PDF

Background: Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results.

View Article and Find Full Text PDF

The total testing process harmonization is central to laboratory medicine, leading to the laboratory test's effectiveness. In this opinion paper the five phases of the TTP are analyzed, describing, and summarizing the critical issues that emerged in each phase of the TTP with the SARS-CoV-2 serological tests that have affected their effectiveness. Testing and screening the population was essential for defining seropositivity and, thus, driving public health policies in the management of the COVID-19 pandemic.

View Article and Find Full Text PDF

Recently, mutations in the genes involved in the spliceosome have attracted considerable interest in different neoplasms. Among these, mutations have acquired great interest, especially in myelodysplastic syndromes, as they identify a subgroup of patients who can benefit from personalized therapy. The gene encodes the largest subunit of the splicing factor 3b protein complex and is critical for spliceosome assembly and mRNA splicing.

View Article and Find Full Text PDF

Mutations in are found in 20% of myelodysplastic syndromes and 5-10% of myeloproliferative neoplasms, where they are considered important for diagnosis and therapy decisions. Sanger sequencing and NGS are the currently available methods to identify mutations, but both are time-consuming and expensive techniques that are not practicable in most small-/medium-sized laboratories. To identify the most frequent mutation, p.

View Article and Find Full Text PDF

mRNA levels represent the key molecular marker for the evaluation of minimal residual disease (MRD) in chronic myeloid leukemia (CML) patients and real-time quantitative PCR (RT-qPCR) is currently the standard method to monitor it. In the era of tyrosine kinase inhibitors (TKIs) discontinuation, droplet digital PCR (ddPCR) has emerged to provide a more precise detection of MRD. To hypothesize the use of ddPCR in clinical practice, we designed a multicentric study to evaluate the potential value of ddPCR in the diagnostic routine.

View Article and Find Full Text PDF

Mitotane is the only approved drug for the treatment of advanced adrenocortical carcinoma and is increasingly used for postoperative adjuvant therapy. Mitotane action involves the deregulation of cytochromes P450 enzymes, depolarization of mitochondrial membranes, and accumulation of free cholesterol, leading to cell death. Although it is known that mitotane destroys the adrenal cortex and impairs steroidogenesis, its exact mechanism of action is still unclear.

View Article and Find Full Text PDF

In recent years, the digital polymerase chain reaction has received increasing interest as it has emerged as a tool to provide more sensitive and accurate detection of minimal residual disease. In order to start the process of data alignment, we assessed the consistency of the BCR-ABL1 quantification results of the analysis of 16 RNA samples at different levels of disease. The results were obtained by two different laboratories that relied on The Qx100/Qx200 Droplet Digital PCR System (Bio-Rad) and Quant Studio 3D dPCR System (Thermofisher) platforms.

View Article and Find Full Text PDF

Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome that originates from the reciprocal translocation t(9;22)(q34;q11.2) and encodes for the constitutively active tyrosine kinase protein BCR-ABL1 from the () sequence and the () gene. Despite BCR-ABL1 being one of the most studied oncogenic proteins, some molecular mechanisms remain enigmatic, and several of the proteins, acting either as positive or negative BCR-ABL1 regulators, are still unknown.

View Article and Find Full Text PDF

The introduction of tyrosine kinase inhibitors in 2001 as a targeted anticancer therapy has significantly improved the quality of life and survival of patients with chronic myeloid leukemia. At the same time, with the introduction of tyrosine kinase inhibitors, the need for precise monitoring of the molecular response to therapy has emerged. Starting with a qualitative polymerase chain reaction, followed by the introduction of a quantitative polymerase chain reaction to determine the exact quantity of the transcript of interest-p210 BCR-ABL1, molecular monitoring in patients with chronic myeloid leukemia was internationally standardized.

View Article and Find Full Text PDF

I is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients.

View Article and Find Full Text PDF

Myeloproliferative neoplasms are divided into essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). Although ruxolitinib was proven to be effective in reducing symptoms, patients rarely achieve complete molecular remission. Therefore, it is relevant to identify new therapeutic targets to improve the clinical outcome of patients.

View Article and Find Full Text PDF
Article Synopsis
  • Myelodysplastic syndromes (MDS) are blood disorders leading to ineffective blood cell production and increased cell death, resulting in low blood cell counts.
  • Mitochondria, which manage cell energy and can accumulate iron, were studied to understand their role in the altered energy metabolism found in MDS and how factors like iron overload affect this process.
  • Findings indicated that MDS patients showed reduced energy production efficiency and higher oxidative stress, but iron chelation treatment improved some biochemical abnormalities in their cells, whereas similar treatments had lesser effects on healthy individuals.
View Article and Find Full Text PDF

During the phase of proliferation needed for hematopoietic reconstitution following transplantation, hematopoietic stem/progenitor cells (HSPC) must express genes involved in stem cell self-renewal. We investigated the expression of genes relevant for self-renewal and expansion of HSPC (operationally defined as CD34+ cells) in steady state and after transplantation. Specifically, we evaluated the expression of ninety-one genes that were analyzed by real-time PCR in CD34+ cells isolated from (i) 12 samples from umbilical cord blood (UCB); (ii) 15 samples from bone marrow healthy donors; (iii) 13 samples from bone marrow after umbilical cord blood transplant (UCBT); and (iv) 29 samples from patients after transplantation with adult hematopoietic cells.

View Article and Find Full Text PDF
Article Synopsis
  • A study found that 2% of chronic myeloid leukemia (CML) patients have atypical RNA transcripts that are hard to measure using standard techniques like real-time PCR and NESTED PCR, making it difficult to monitor their treatment responses.
  • * The research introduced a highly sensitive method called droplet digital PCR (ddPCR) that can accurately quantify these atypical transcripts, even at very low levels (as low as 0.001%).
  • * The findings suggest that ddPCR could help identify patients with a deep molecular response, potentially qualifying them for treatment-free remission options that were previously inaccessible due to unreliable testing.
View Article and Find Full Text PDF