98%
921
2 minutes
20
During development, neural progenitors are in proliferative and immature states; however, the molecular machinery that cooperatively controls both states remains elusive. Here, we report that cyclin D1 (CCND1) directly regulates both proliferative and immature states of cerebellar granule cell progenitors (GCPs). CCND1 not only accelerates cell cycle but also upregulates ATOH1 protein, an essential transcription factor that maintains GCPs in an immature state. In cooperation with CDK4, CCND1 directly phosphorylates S309 of ATOH1, which inhibits additional phosphorylation at S328 and consequently prevents S328 phosphorylation-dependent ATOH1 degradation. Additionally, PROX1 downregulates Ccnd1 expression by histone deacetylation of Ccnd1 promoter in GCPs, leading to cell cycle exit and differentiation. Moreover, WNT signaling upregulates PROX1 expression in GCPs. These findings suggest that WNT-PROX1-CCND1-ATOH1 signaling cascade cooperatively controls proliferative and immature states of GCPs. We revealed that the expression and phosphorylation levels of these molecules dynamically change during cerebellar development, which are suggested to determine appropriate differentiation rates from GCPs to GCs at distinct developmental stages. This study contributes to understanding the regulatory mechanism of GCPs as well as neural progenitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280807 | PMC |
http://dx.doi.org/10.15252/embj.2020105712 | DOI Listing |
iScience
September 2025
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Hessen, Germany.
Efforts to efficiently target brain tumors are constrained by the dearth of appropriate models to study tumor behavior toward treatment approaches as well as potential side effects to the surrounding normal tissue. We established a reproducible cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing , a common oncogene in brain tumors. GFP/c-MYC cells were isolated from tumor organoids and used in two different approaches: GFP/c-MYC cells co-cultured with cerebral organoid slices or fused as spheres to whole organoids.
View Article and Find Full Text PDFFront Vet Sci
July 2025
Animal Dental Center, Towson, MD, United States.
This report identifies two cases of juvenile dogs with an aneurysmal bone cyst (ABC). The first case describes an ABC in the left rostral mandible, and the second case describes an ABC in the right maxilla. ABCs are typically identified in juvenile or young animals and have been reported in a variety of species.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient in vitro-derived red blood cells for clinical purposes. While BMI1, a Polycomb Repressive Complex 1 member, is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts, its mechanism of action remains poorly understood. Here we report that BMI1 overexpression leads to 10 billion-fold increase in self-renewal of human erythroblasts, which can terminally mature and agglutinate with typing reagent monoclonal antibodies.
View Article and Find Full Text PDFCells
August 2025
National Research Center "Kurchatov Institute", 1 Akademika Kurchatova sq., 123182 Moscow, Russia.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p.
View Article and Find Full Text PDFCell Mol Life Sci
August 2025
Laboratory Head - Gene Regulatory Networks Laboratory, Centre for Cancer Biology, University of South Australia, Bradley Building, Rm HB-9-31, North Terrace, Adelaide, South Australia, 5000, Australia.
Development is characterized by dynamic changes in gene expression as cells traverse genetic pathways and make lineage-specific commitments. Transcription factors, which drive gene expression, and microRNAs, the largest class of post-transcriptional regulators, often function together within the same genetic networks. These interactions frequently include direct regulation of one another and shared target genes, forming feedback and feedforward loops that fine-tune gene expression to establish and maintain cell identity.
View Article and Find Full Text PDF