Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemia-reperfusion injury is a major cause of acute kidney injury. Recent studies on the pathophysiology of ischemia-reperfusion-induced acute kidney injury showed that immunologic responses significantly affect kidney ischemia-reperfusion injury and repair. Nuclear factor (NF)-ĸB signaling, which controls cytokine production and cell survival, is significantly involved in ischemia-reperfusion-induced acute kidney injury, and its inhibition can ameliorate ischemic acute kidney injury. Using EXPLOR, a novel, optogenetically engineered exosome technology, we successfully delivered the exosomal super-repressor inhibitor of NF-ĸB (Exo-srIĸB) into B6 wild type mice before/after kidney ischemia-reperfusion surgery, and compared outcomes with those of a control exosome (Exo-Naïve)-injected group. Exo-srIĸB treatment resulted in lower levels of serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin in post-ischemic mice than in the Exo-Naïve treatment group. Systemic delivery of Exo-srIĸB decreased NF-ĸB activity in post-ischemic kidneys and reduced apoptosis. Post-ischemic kidneys showed decreased gene expression of pro-inflammatory cytokines and adhesion molecules with Exo-srIĸB treatment as compared with the control. Intravital imaging confirmed the uptake of exosomes in neutrophils and macrophages. Exo-srIĸB treatment also significantly affected post-ischemic kidney immune cell populations, lowering neutrophil, monocyte/macrophage, and T cell frequencies than those in the control. Thus, modulation of NF-ĸB signaling through exosomal delivery can be used as a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2021.04.039DOI Listing

Publication Analysis

Top Keywords

acute kidney
20
kidney injury
20
kidney ischemia-reperfusion
12
ischemia-reperfusion injury
12
ischemia-reperfusion-induced acute
12
exo-sriĸb treatment
12
kidney
9
injury
8
nf-ĸb signaling
8
post-ischemic kidneys
8

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Copeptin in the diagnosis and management of renal tubular disorders.

Pediatr Nephrol

September 2025

Pediatric Nephrology Department, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.

Copeptin, a stable glycopeptide derived from the precursor of arginine vasopressin (AVP), has emerged as a valuable surrogate biomarker for AVP due to its stability and ease of measurement. This narrative review explores the physiological role of copeptin, its utility as a diagnostic and prognostic biomarker in different kidney diseases, and its clinical relevance in renal tubular disorders. The clinical application of copeptin as a diagnostic biomarker is best established in the differential diagnosis of polyuria-polydipsia syndrome (PPS), distinguishing nephrogenic diabetes insipidus (NDI) from central diabetes insipidus (CDI) and primary polydipsia (PP).

View Article and Find Full Text PDF

Bibliometric analysis of immune-related acute kidney injury induced by cancer immunotherapy (2000-2025).

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.

View Article and Find Full Text PDF

Circular RNA (circRNA) has been confirmed to be a regulator for septic acute kidney injury (AKI). It is reported that circ_0049271 has abnormal expression in AKI patients, but its role and mechanism in septic AKI remain unclear. Lipopolysaccharide (LPS)-stimulated HK-2 cells were served as the cellular model of sepsis-associated AKI (SAKI).

View Article and Find Full Text PDF