98%
921
2 minutes
20
Demonstration of bioequivalence (BE) is mandatory while developing generic drugs. The scientific concept of BE applies equally to different regulatory agencies. However, the application of the concept may differ for each agency, which can affect the design of BE studies. To evaluate the study practices in terms of the BE concept in South Korea, we retrospectively analyzed BE study reports available from Ministry of Food and Drug Safety between 2013 and 2019. Statistical estimation of the pharmacokinetic parameters, including peak concentration and area under the concentration-time curve to the last measurable concentration, as well as study design, number of subjects in a study, study duration, fasting status, and formulation of specific drugs were obtained. The drugs were classified per World Health Organization Anatomical Therapeutic Chemical Classification and Biopharmaceutics Classification System. Post-hoc intrasubject coefficient of variation and corresponding sample sizes were calculated from the 90% confidence intervals of pharmacokinetic parameters. A total of 143 generic drugs in 588 BE studies were analyzed. The largest number of studies were performed in the area of Cardiovascular system (172 studies), followed by Nervous system (143 studies) and Alimentary tract and metabolism (92 studies). Overall, BE studies in South Korea were conducted in accordance with the global guideline despite the differences in details. BE studies were focused on the several therapeutic areas and conducted in a similar manner. The number of subjects was generally larger than that estimated with 90% power.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147690 | PMC |
http://dx.doi.org/10.3389/fphar.2021.651790 | DOI Listing |
Arthritis Rheumatol
September 2025
Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFMater Horiz
September 2025
TU Delft, Netherlands.
Soft wearable sensors offer promising potential for advanced diagnostics, therapeutics, and human-machine interfaces. Unlike conventional devices that are bulky and rigid, often compromising skin integrity, comfort, and user compliance, soft wearable sensors are flexible, conformable, and better suited to the dynamic skin surface. This improved mechanical integration enhances signal fidelity and device performance, while also enabling safer, more comfortable, and continuous physiological monitoring in real-world environments.
View Article and Find Full Text PDFImmunotherapy
September 2025
aGuangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Ann Med
December 2025
Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Background: Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine carcinoma (NEC) with poor prognosis due to chemotherapy resistance. Molecular subtypes, including ASCL1, NEUROD1, YAP1 and POU2F3, have distinct clinical implications. POU2F3, linked to a tuft cell-like lineage, represents a non-neuroendocrine subtype found in SCLC and extrapulmonary NECs.
View Article and Find Full Text PDF