98%
921
2 minutes
20
Huntington's disease is a dominantly inherited, fatal neurodegenerative disorder caused by a CAG expansion in the huntingtin (HTT) gene, coding for pathological mutant HTT protein (mHTT). Because of its gain-of-function mechanism and monogenic aetiology, strategies to lower HTT are being actively investigated as disease-modifying therapies. Most approaches are currently targeted at the manifest stage, where clinical outcomes are used to evaluate the effectiveness of therapy. However, as almost 50% of striatal volume has been lost at the time of onset of clinical manifest, it would be preferable to begin therapy in the premanifest period. An unmet challenge is how to evaluate therapeutic efficacy before the presence of clinical symptoms as outcome measures. To address this, we aim to develop non-invasive sensitive biomarkers that provide insight into therapeutic efficacy in the premanifest stage of Huntington's disease. In this study, we mapped the temporal trajectories of arteriolar cerebral blood volumes (CBVa) using inflow-based vascular-space-occupancy (iVASO) MRI in the heterozygous zQ175 mice, a full-length mHTT expressing and slowly progressing model with a premanifest period as in human Huntington's disease. Significantly elevated CBVa was evident in premanifest zQ175 mice prior to motor deficits and striatal atrophy, recapitulating altered CBVa in human premanifest Huntington's disease. CRISPR/Cas9-mediated non-allele-specific HTT silencing in striatal neurons restored altered CBVa in premanifest zQ175 mice, delayed onset of striatal atrophy, and slowed the progression of motor phenotype and brain pathology. This study-for the first time-shows that a non-invasive functional MRI measure detects therapeutic efficacy in the premanifest stage and demonstrates long-term benefits of a non-allele-selective HTT silencing treatment introduced in the premanifest Huntington's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634120 | PMC |
http://dx.doi.org/10.1093/brain/awab190 | DOI Listing |
Cell Biochem Biophys
September 2025
Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India.
Aging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDFCureus
August 2025
Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK.
Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of neuroscience, UC San Diego, San Diego, California, USA.
Background: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene on chromosome 4, leading to progressive cognitive decline, motor impairment, and functional disability. Although balance impairment is recognized in HD, its onset and evolution with disease stage remain poorly understood.
Objective: The aim was to track the onset and evolution of balance impairment in HD with progression of disease stage using the BTrackS Balance Plate.