Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Density functional theory (DFT) calculations were conducted to gain insight into the reaction mechanism of the Brønsted acid-catalyzed unsymmetrical 1,2,4,5-tetrazine synthesis. Various possible reaction pathways were considered, and the most favorable one can be characterized via sequential six steps, including addition of DCM to hydrazine giving complex , N-H bond activation in mediated by sulfur, AcOH-assisted substitution of with sulfur-activated hydrazine , HNO-assisted addition of nitrile to intermediate , cyclization, and intramolecular elimination leading to the final product . Among the six steps, sulfur activation of N-H bond is found to be the rate-determining step (RDS). The mechanism rationalizes the experimental observation that 2 equiv of sulfur leads to the best yield of product. Furthermore, we disclosed that the Brønsted acid additives (i.e., acetic acid and nitrous acid) served triple roles as catalyst, proton shuttle, and hydrogen bond donor and acceptor in the whole catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c00274DOI Listing

Publication Analysis

Top Keywords

brønsted acid-catalyzed
8
acid-catalyzed unsymmetrical
8
n-h bond
8
computational mechanistic
4
mechanistic study
4
study brønsted
4
unsymmetrical 1245-tetrazines
4
1245-tetrazines synthesis
4
synthesis density
4
density functional
4

Similar Publications

We report Lewis acid-catalyzed direct conversion of carboxylic acids into primary amides and nitriles using bis(trimethylsilyl)amine as an ammonia surrogate. With 1.1 equiv of bis(trimethylsilyl)amine, ytterbium(III) and hafnium(IV) triflates efficiently catalyzed the reaction, affording various primary amides in high yields with a broad substrate scope.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

We report an efficient Lewis acid catalyzed enantioselective synthesis of diarylindolylmethanes via in situ generated -quinone methides. The protocol enables selective Friedel-Crafts alkylation at indole C3, and by blocking this site, extends selectively to C2 position. Mechanistic studies, including quantum calculations and Hammett analysis, reveal selectivity arising from β-methide steric hindrance and catalyst-substrate π-π interactions.

View Article and Find Full Text PDF

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Butyl acetate, a valuable flavor ester, is conventionally synthesized through acid-catalyzed reactions, which suffer from environmental concerns and inefficiencies. This study explores a greener alternative using liquid lipase Novozym 400238 for its enzymatic synthesis. The central composite design (CCD) within response surface methodology (RSM) was employed to assess the reaction parameters, including temperature, substrate molar ratio, enzyme concentration, and hexane content, along with their effects on the conversion rate.

View Article and Find Full Text PDF