Probing the shear viscoelasticity of a nanoscale ionic liquid meniscus.

Phys Chem Chem Phys

Department of Physics & Astronomy, Center for 0D Nanofluidics, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ionic liquids (ILs) are emerging as novel solvents that exhibit peculiar mechanical properties in the form of thin films on metal surfaces under normal pressure. However, the mechanical properties of ILs in the form of nano-meniscus have not been analyzed yet. Here, we investigate the shear viscoelasticity of a single IL meniscus at the nanoscale. To characterize the shear rheological properties of ILs, we employ a quartz tuning fork-based atomic force microscope, conduct dynamic force spectroscopy, and analyse shear properties using the non-Newtonian-Maxwell model. The elastic response of the IL nanomeniscus is found to be about 25 times higher than that of the bulk IL bridge, whereas the viscous responses are similar. In addition, by conducting shear velocity-dependent measurements, we find that the IL meniscus shows nonlinear rheological behaviours. Interestingly, we observe that the relaxation time of the IL increases at a tip-substrate distance of about 60 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp06003hDOI Listing

Publication Analysis

Top Keywords

shear viscoelasticity
8
mechanical properties
8
properties ils
8
probing shear
4
viscoelasticity nanoscale
4
nanoscale ionic
4
ionic liquid
4
liquid meniscus
4
meniscus ionic
4
ionic liquids
4

Similar Publications

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Heterogeneous response and non-Markovianity in the microrheology of semisolid viscoelastic materials.

J Phys Condens Matter

September 2025

Department of Physics, Universidade Federal de Vicosa, Av. P. H. Rolds, s/n, Vicosa, Vicosa, 36570-000, BRAZIL.

Recent works indicate that heterogeneous response and non-Markovianity may yield recognizable hallmarks in the microrheology of semisolid viscoelastic materials. Here we perform numerical simulations using a non-Markovian overdamped Langevin approach to explore how the microrheology experienced by probe particles immersed in an effective semisolid material can be influenced by its micro-heterogeneities. Our results show that, besides affecting the mean squared displacement, the time-dependent diffusion coefficient, and the shear moduli, the micro-heterogeneities lead to displacement distributions that deviate from the usual Gaussian behavior.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF

Alginate is known to readily aggregate and form a physical gel when exposed to cations, making it a promising material for bioprinting applications. Alginate and its derivatives exhibit viscoelastic behavior due to the combination of solid and fluid components, necessitating the characterization of both elastic and viscous properties. However, a comprehensive investigation into the time-dependent viscoelastic properties of alginate hydrogels specifically optimized for bioprinting is still lacking.

View Article and Find Full Text PDF