A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intelligent prediction of RBC demand in trauma patients using decision tree methods. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The vital signs of trauma patients are complex and changeable, and the prediction of blood transfusion demand mainly depends on doctors' experience and trauma scoring system; therefore, it cannot be accurately predicted. In this study, a machine learning decision tree algorithm [classification and regression tree (CRT) and eXtreme gradient boosting (XGBoost)] was proposed for the demand prediction of traumatic blood transfusion to provide technical support for doctors.

Methods: A total of 1371 trauma patients who were diverted to the Emergency Department of the First Medical Center of Chinese PLA General Hospital from January 2014 to January 2018 were collected from an emergency trauma database. The vital signs, laboratory examination parameters and blood transfusion volume were used as variables, and the non-invasive parameters and all (non-invasive + invasive) parameters were used to construct an intelligent prediction model for red blood cell (RBC) demand by logistic regression (LR), CRT and XGBoost. The prediction accuracy of the model was compared with the area under the curve (AUC).

Results: For non-invasive parameters, the LR method was the best, with an AUC of 0.72 [95% confidence interval (CI) 0.657-0.775], which was higher than the CRT (AUC 0.69, 95% CI 0.633-0.751) and the XGBoost (AUC 0.71, 95% CI 0.654-0.756, P < 0.05). The trauma location and shock index are important prediction parameters. For all the prediction parameters, XGBoost was the best, with an AUC of 0.94 (95% CI 0.893-0.981), which was higher than the LR (AUC 0.80, 95% CI 0.744-0.850) and the CRT (AUC 0.82, 95% CI 0.779-0.853, P < 0.05). Haematocrit (Hct) is an important prediction parameter.

Conclusions: The classification performance of the intelligent prediction model of red blood cell transfusion in trauma patients constructed by the decision tree algorithm is not inferior to that of the traditional LR method. It can be used as a technical support to assist doctors to make rapid and accurate blood transfusion decisions in emergency rescue environment, so as to improve the success rate of patient treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142481PMC
http://dx.doi.org/10.1186/s40779-021-00326-3DOI Listing

Publication Analysis

Top Keywords

trauma patients
12
blood transfusion
12
intelligent prediction
8
rbc demand
8
decision tree
8
vital signs
8
non-invasive parameters
8
trauma
5
prediction rbc
4
demand
4

Similar Publications