98%
921
2 minutes
20
Background: Biogeochemical exports from watersheds are modulated by the activity of microorganisms that function over micron scales. Here, we tested the hypothesis that meander-bound regions share a core microbiome and exhibit patterns of metabolic potential that broadly predict biogeochemical processes in floodplain soils along a river corridor.
Results: We intensively sampled the microbiomes of floodplain soils located in the upper, middle, and lower reaches of the East River, Colorado. Despite the very high microbial diversity and complexity of the soils, we reconstructed 248 quality draft genomes representative of subspecies. Approximately one third of these bacterial subspecies was detected across all three locations at similar abundance levels, and ~ 15% of species were detected in two consecutive years. Within the meander-bound floodplains, we did not detect systematic patterns of gene abundance based on sampling position relative to the river. However, across meanders, we identified a core floodplain microbiome that is enriched in capacities for aerobic respiration, aerobic CO oxidation, and thiosulfate oxidation with the formation of elemental sulfur. Given this, we conducted a transcriptomic analysis of the middle floodplain. In contrast to predictions made based on the prominence of gene inventories, the most highly transcribed genes were relatively rare amoCAB and nxrAB (for nitrification) genes, followed by genes involved in methanol and formate oxidation, and nitrogen and CO fixation. Within all three meanders, low soil organic carbon correlated with high activity of genes involved in methanol, formate, sulfide, hydrogen, and ammonia oxidation, nitrite oxidoreduction, and nitrate and nitrite reduction. Overall, the results emphasize the importance of sulfur, one-carbon and nitrogen compound metabolism in soils of the riparian corridor.
Conclusions: The disparity between the scale of a microbial cell and the scale of a watershed currently limits the development of genomically informed predictive models describing watershed biogeochemical function. Meander-bound floodplains appear to serve as scaling motifs that predict aggregate capacities for biogeochemical transformations, providing a foundation for incorporating riparian soil microbiomes in watershed models. Widely represented genetic capacities did not predict in situ activity at one time point, but rather they define a reservoir of biogeochemical potential available as conditions change. Video abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141241 | PMC |
http://dx.doi.org/10.1186/s40168-020-00957-z | DOI Listing |
Front Microbiol
August 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.
View Article and Find Full Text PDFMar Environ Res
September 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laborator
Sri Lanka is uniquely situated at the junction of the Bay of Bengal (BOB) and the Arabian Sea (AS), where phytoplankton community may be strongly influenced by ocean dynamical processes, particularly mesoscale eddies and the East Indian Coastal Current (EICC). Here, to explore these regulatory mechanisms, phytoplankton and physicochemical parameters were collected from the top 200 m water column in the eastern and southern seas of Sri Lanka during the winter monsoon. Results showed higher concentrations of nutrients and phytoplankton abundance within the regions affected by EICC and cyclonic eddy (CE) compared to anticyclonic eddy (ACE).
View Article and Find Full Text PDFMar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China.
Nanoplastics are emerging pollutants with the potential to disrupt the microbial physiology and biogeochemical cycles in marine ecosystems. However, their influence on silicon cycling in cyanobacteria remains poorly understood. Here, we investigate how amine-modified polystyrene nanoplastics (PS-NH) regulate silicon transport and biosilica deposition in sp.
View Article and Find Full Text PDFmSystems
September 2025
Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.
Dinitrogen (N) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g.
View Article and Find Full Text PDF