Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements.

J Mater Chem B

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge. In this sense, the well-established synthetic and functionalization routes to prepare nanoparticles with different functionalities make them excellent candidates to be combined with polymeric systems in order to generate suitable multi-functional bioinks. In this review, we briefly discuss the most recent advances in the design of functional nanocomposite hydrogels considering their already evaluated or potential use as bioinks. The scientific development over the last few years is reviewed, focusing the discussion on the wide range of functionalities that can be incorporated into 3D bioprinted constructs through the addition of multifunctional nanoparticles in order to increase their regenerative potential in the field of tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00717cDOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
bioinks
5
engineering next-generation
4
next-generation bioinks
4
bioinks nanoparticles
4
nanoparticles moving
4
moving reinforcement
4
reinforcement fillers
4
fillers multifunctional
4
multifunctional nanoelements
4

Similar Publications

Organotypic Culture of Adult Vascularized Porcine Retina Explants In Vitro on Nanotube Scaffolds.

Biol Proced Online

September 2025

Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.

Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.

Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.

View Article and Find Full Text PDF

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF

Bi-layered microflap surgery for the treatment of anterior glottic web.

Eur Arch Otorhinolaryngol

September 2025

Department of Otolaryngology Head And Neck Surgery, Far Eastern Memorial Hospital, No. 21, Section 2, Nan-Ya South Road, New Taipei City, Taiwan.

Introduction: Anterior glottic webs are epithelium-covered fibrous tissue formations at the anterior commissure, leading to synechiae between the bilateral vocal folds. They manifest with symptoms ranging from hoarseness to airway obstruction. However, treating anterior glottic webs are challenging due to their high recurrence rates.

View Article and Find Full Text PDF