98%
921
2 minutes
20
Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic BiFeO with a periodicity of 500 nm yields a modulation of the effective magnetic field in the micrometer-scale, ferromagnetic LaSrMnO magnonic waveguide. We evidence the magnetoelectric coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic band gap with >20 dB rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c00499 | DOI Listing |
Phys Rev Lett
August 2025
ShanghaiTech University, School of Physical Science and Technology, Shanghai 201210, China.
Time-varying media break temporal translation symmetry, enabling advanced wave manipulation. However, this phenomenon remains largely unexplored in magnonic systems due to the challenge of achieving rapid and significant changes in magnon dispersion. Here, we construct a time-varying strong coupling between two magnon modes and observe chirped Rabi-like oscillations near the pulse edges.
View Article and Find Full Text PDFSci Rep
August 2025
National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Precise control of coupling strength, damping rate and nonreciprocity in photon-magnon systems is essential for advancing hybrid quantum technologies, including reconfigurable microwave components and quantum transducers. Here, we demonstrate magnetic field angle-dependent control of photon-magnon coupling and magnon dissipation in a cross-shaped microwave cavity supporting a spatially nonuniform radio-frequency (rf) magnetic field. By rotating the external magnetic field angle θ relative to the normal of the transmission line within the cavity plane, we simultaneously control the coherent coupling strength [Formula: see text], the ferromagnetic resonance (FMR) damping rate, and the system's nonreciprocal response.
View Article and Find Full Text PDFNat Commun
July 2025
International Quantum Academy, Shenzhen, China.
Antiferromagnetic spin textures, compared to their ferromagnetic counterparts, innately possess high stability with respect to external disturbance and high-frequency dynamics compatible with ultrafast information processing. However, deterministic creation and reconfigurable switching of different antiferromagnetic spin textures have not been realized. Here, we demonstrate room-temperature deterministic switching between three antiferromagnetic textures identified by characteristically different high frequency dynamics in single-crystal hematite (α-Fe2O3).
View Article and Find Full Text PDFAdv Mater
August 2025
NanoSpin, Department of Applied Physics, Aalto University School of Science, Aalto, FI-00076, Finland.
Metamaterials, designed to exhibit properties beyond those found in nature, enable unprecedented control over physical phenomena through flexible band structure engineering. This work introduces a hybrid magnonic-plasmonic metamaterial that allows spatiotemporal manipulation of spin-wave transport at micrometer scales and sub-microsecond timescales. The system integrates a plasmonic metamaterial, comprising Au nanodisk arrays arranged in a 1D periodic stripe pattern, with a low-damping yttrium iron garnet (YIG) film as the spin-wave transport medium.
View Article and Find Full Text PDFNano Lett
June 2025
Department of Materials, ETH Zurich, Zurich 8093, Switzerland.
Harnessing spin currents to control magnon dynamics enables new functionalities in magnonic devices. Here, we demonstrate current-controlled magnon-magnon coupling between cavity and boundary modes in an ultrathin film of Bi-doped yttrium iron garnet (BiYIG). Cavity modes emerge in a BiYIG region between two Pt nanostripes, where interfacial anisotropy modifies the magnon dispersion.
View Article and Find Full Text PDF