A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Current-Controlled Magnon-Magnon Coupling in an On-Chip Cavity Resonator. | LitMetric

Current-Controlled Magnon-Magnon Coupling in an On-Chip Cavity Resonator.

Nano Lett

Department of Materials, ETH Zurich, Zurich 8093, Switzerland.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Harnessing spin currents to control magnon dynamics enables new functionalities in magnonic devices. Here, we demonstrate current-controlled magnon-magnon coupling between cavity and boundary modes in an ultrathin film of Bi-doped yttrium iron garnet (BiYIG). Cavity modes emerge in a BiYIG region between two Pt nanostripes, where interfacial anisotropy modifies the magnon dispersion. These modes hybridize with boundary magnons confined within the Pt-capped BiYIG, resulting in an anticrossing gap. Modeling based on dipole-exchange spin-wave dispersion accurately reproduces the observed modes and their hybridization. Spin current injection via the spin Hall effect in a Pt nanostripe disrupts the cavity boundary conditions and suppresses both cavity modes and hybridization upon driving the system beyond the damping compensation threshold. Furthermore, tuning the microwave power applied to a microstrip antenna enables controlled detuning of the anticrossing gap. Our findings provide a platform for exploring spin current-magnon interactions and designing on-chip reconfigurable magnonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c01746DOI Listing

Publication Analysis

Top Keywords

current-controlled magnon-magnon
8
magnon-magnon coupling
8
magnonic devices
8
cavity boundary
8
cavity modes
8
anticrossing gap
8
modes hybridization
8
cavity
5
modes
5
coupling on-chip
4

Similar Publications