98%
921
2 minutes
20
Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants-for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134433 | PMC |
http://dx.doi.org/10.1038/s41598-021-90062-4 | DOI Listing |
J Safety Res
September 2025
Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Center for Injury Research and Policy, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States. Electronic address:
Background: An estimated 44,680 people died in motor-vehicle crashes in the United States in 2024. A disproportionate share of these deaths involved young people. In 2023 alone, these crashes cost the U.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.
Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland. Electronic address:
Perchlorate contamination is a recent and significant issue in the context of environmental pollution. Perchlorates are mainly used as ingredients in solid propellants and pyrotechnic compositions. Perchlorate contamination of drinking water and food has recently become a human health concern, as studies have shown that they can interfere with the normal uptake of iodine by the thyroid gland, leading to a reduction in its production of triiodothyronine (T3) and thyroxine (T4) in vertebrates.
View Article and Find Full Text PDFWater Res
September 2025
College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China. Electronic address:
This study presents a renewable electricity-driven microbial electrosynthesis (MES) system integrated with biological nitrogen removal (BNR) to achieve carbon-negative wastewater treatment. The MES system converts CO₂ into acetate, which is directly utilized as an internal carbon source for denitrification. Incorporation of biochar-derived conductive materials enhanced electron transfer, increasing acetate productivity to 1.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China. Electronic address:
The structural specificity of organic nitrogen sources in modulating cyanobacterial physiology and toxin production remains poorly understood. This study systematically evaluated the bioavailability of exogenous glycine peptides in Microcystis aeruginosa (M. aeruginosa) and their regulatory roles in algal growth and microcystins (MCs) synthesis through an integrated physiological and transcriptomic approach.
View Article and Find Full Text PDF