Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its nearest neighboring cells across a range of values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179149PMC
http://dx.doi.org/10.1073/pnas.2100293118DOI Listing

Publication Analysis

Top Keywords

differentially abundant
8
cells samples
8
biological states
8
detect differences
8
subpopulations
7
da-seq
6
detection differentially
4
abundant cell
4
cell subpopulations
4
subpopulations scrna-seq
4

Similar Publications

Background: The gut microbiota produces numerous metabolites that can enter the circulation and exert effects outside the gut. Several studies have reported altered gut microbiota composition and circulating metabolites in patients with chronic heart failure (HF) compared to healthy controls. Limited data is available on the interplay between dysbiotic features of the gut microbiota and altered circulating metabolites in HF patients.

View Article and Find Full Text PDF

Metabolomic and transcriptomic analyses unveil the accumulation of shikimic acid in the leaves of .

Front Plant Sci

August 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.

Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.

View Article and Find Full Text PDF

Background: Despite progress in serum biomarker research, reliable tools for early diagnosis and patient stratification in multiple sclerosis (MS) remain limited. This study uses proteomic profiling in untreated MS patients to identify early disease-associated biomarkers.

Methods: We conducted an unbiased proteomic screen to capture broad serum protein expression profiles in a well-characterized discovery sample: 7 relapsing remitting MS (RRMS), 7 secondary progressive MS (SPMS), 4 with primary progressive MS (PPMS) alongside 6 healthy controls (HC).

View Article and Find Full Text PDF

Comprehensive analysis based on the ubiquitination- and deubiquitylation-related genes reveals the function of NEURL3 in esophageal squamous cell carcinoma.

Front Immunol

September 2025

Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China.

Background: As a highly invasive gastrointestinal malignancy, esophageal squamous cell carcinoma (ESCC) carries with its high morbidity and mortality. Accumulating evidence indicates that abnormal activation of ubiquitination and deubiquitylation has been implicated in pathophysiology of ESCC. However, rare prognostic models for ubiquitination-related genes (URGs) and deubiquitylation-related genes (DRGs) have been built up in ESCC.

View Article and Find Full Text PDF

Targeted metabolomic and transcriptomic reveal the regulatory network of ultrasound on polyphenol biosynthesis in tender coconut flesh during storage.

Food Chem (Oxf)

December 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.

Coconut flesh, the solid endosperm, of coconut, which is rich in fat, protein and polyphenols. To investigate the impact of ultrasound treatment on the biosynthesis of polyphenols in tender coconut flesh during storage, the targeted metabolomic and transcriptomic analyses were employed. A total of 36 phenolic compounds were identified, of which catechin, epicatechin, gossypol and vanillic acid were the most abundant ones in 'Hainan Tall' coconut flesh.

View Article and Find Full Text PDF