98%
921
2 minutes
20
Phytoplankton comprises a large fraction of the vertical carbon flux to deep water via the sinking of particulate organic matter (POM). However, despite the importance of phytoplankton in the coupling of benthic-pelagic productivity, the extent to which its deposition in the sediment affects bacterial dynamics at the water-sediment interface is poorly understood. Here, we conducted a microcosm experiment in which varying mixtures of diatom and cyanobacteria, representing phytoplankton-derived POM of differing quality, served as inputs to sediment cores. Characterization of 16S rRNA gene of the bacterial communities at the water-sediment interface showed that bacterial α-diversity was not affected by POM addition, while bacterial β-diversity changed significantly along the POM quality gradient, with the variation driven by changes in relative abundance rather than in taxon replacement. Analysing individual taxa abundances across the POM gradient revealed two distinct bacterial responses, in which taxa within either diatom- or cyanobacteria-favoured groups were more phylogenetically closely related to one another than other taxa found in the water. Moreover, there was little overlap in taxon identity between sediment and water communities, suggesting the minor role played by sediment bacteria in influencing the observed changes in bacterial communities in the overlying water. Together, these results showed that variability in phytoplankton-originated POM can impact bacterial dynamics at the water-sediment interface. Our findings highlight the importance of considering the potential interactions between phytoplankton and bacteria in benthic-pelagic coupling in efforts to understand the structure and function of bacterial communities under a changing climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15984 | DOI Listing |
PLoS Biol
September 2025
Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Department of Infectious Diseases and Clinical Microbiology, Etlik City Hospital, Ankara, Turkey.
Introduction: Both aging and malignancy are associated with an increased risk of infections, including bloodstream infections. Despite their clinical significance, research concentrating on the epidemiology, outcomes, and risk factors influencing mortality in older cancer patients is still limited. This study aims to examine the epidemiology of bloodstream infections and factors contributing to mortality among older cancer patients.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China.
Introduction: Nocardia spp. are Gram-positive, aerobic actinomycetes, which can cause pulmonary, primary cutaneous, and lymphocutaneous infections. However, severe pneumonia caused by Nocardia otitidiscaviarum has rare reported.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Unlabelled: The genus includes opportunistic pathogens inhabiting engineered aquatic ecosystems, where managing their presence and abundance is crucial for public health. In these environments, interact positively or negatively with multiple members of the microbial communities. Here, we identified bacteria and compounds with -antagonistic properties.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
Objectives: Oral health is an important aspect of quality of life for older people, especially those with dementia. The impact of an active oral hygiene program on the oral microbiome was explored in a group of older participants (average age 84 years old) with dementia against a separate control group whose oral hygiene followed the status quo.
Materials And Methods: The oral cavity bacteriomes and mycobiomes were assessed from swabs of cheek, gum, and tongue surfaces.