Publications by authors named "Monika Winder"

The introduction of non-native fish species into new environments has raised global concerns due to potential ecological impacts on recipient ecosystems. A previous study focusing on the introduced fish species Arapaima gigas in Bolivian Amazon waters showed that its isotopic niche significantly overlapped with most co-occurring native fish species, suggesting potential competition. To evaluate this hypothesis, we extended here the investigation by comparing the trophic position and isotopic niche width of eleven abundant native fish species inhabiting both colonized and non-colonized floodplain lakes.

View Article and Find Full Text PDF

Seagrass habitats play a major role in fisheries productivity through nursery functions and feeding grounds for diverse fish species. However, little is known about the seasonal distribution of fish larvae at large spatial scales in coastal East Africa. We investigated drivers of the seasonal fish larvae abundance and composition in seagrass habitats in Kenya and Tanzania.

View Article and Find Full Text PDF

In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer.

View Article and Find Full Text PDF

In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water.

View Article and Find Full Text PDF

Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey selectivity of diverse consumer guilds. While DNA metabarcoding is increasingly used for dietary studies, methodological biases have limited its application for food web modeling. Here, we used data from dietary metabarcoding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-consumer network.

View Article and Find Full Text PDF

The plankton community consists of diverse interacting species. The estimation of species interactions in nature is challenging. There is limited knowledge on how plankton interactions are influenced by environmental conditions because of limited understanding of zooplankton feeding strategies and factors affecting trophic interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Marine communities are experiencing rapid changes due to human impacts, with significant shifts observed in the Baltic Sea's pelagic food web over the past century.
  • The study focuses on the diet overlap among herring, sprat, and stickleback in the Baltic Sea, using advanced methodologies like DNA metabarcoding and microscopy to analyze their feeding habits.
  • Findings reveal that while there is niche differentiation between the clupeids and stickleback, rotifers play a crucial role as an underutilized food resource, suggesting they support the growing stickleback population by filling an open feeding niche.
View Article and Find Full Text PDF

The neurotoxic secondary metabolite β-N-methylamino-L-alanine (BMAA) and its structural isomer 2,4-diaminobutyric acid (DAB) are known to be produced by various phytoplankton groups. Despite the worldwide spread of these toxin producers, no obvious role and function of BMAA and DAB in diatoms have been identified. Here, we investigated the effects of biotic factors, i.

View Article and Find Full Text PDF

Fish larvae supply in nearshore vegetated habitats, such as seagrass meadows and mangroves, contributes significantly to sustainable fish stocks. Yet, little information is available on distribution patterns of fish larvae in mangrove and seagrass habitats of the western Indian Ocean. The present study investigated the abundance, diversity and assemblage composition of fish larvae in mangrove creeks, inshore seagrass meadows (located adjacent to mangroves) and nearshore seagrass meadows (located in-between mangroves and coral reefs) in two coastal seascapes of Zanzibar (Tanzania) across seasons for 1 year.

View Article and Find Full Text PDF

In coastal aphotic sediments, organic matter (OM) input from phytoplankton is the primary food resource for benthic organisms. Current observations from temperate ecosystems like the Baltic Sea report a decline in spring bloom diatoms, while summer cyanobacteria blooms are becoming more frequent and intense. These climate-driven changes in phytoplankton communities may in turn have important consequences for benthic biodiversity and ecosystem functions, but such questions are not yet sufficiently explored experimentally.

View Article and Find Full Text PDF

Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing and genes.

View Article and Find Full Text PDF

Phytoplankton comprises a large fraction of the vertical carbon flux to deep water via the sinking of particulate organic matter (POM). However, despite the importance of phytoplankton in the coupling of benthic-pelagic productivity, the extent to which its deposition in the sediment affects bacterial dynamics at the water-sediment interface is poorly understood. Here, we conducted a microcosm experiment in which varying mixtures of diatom and cyanobacteria, representing phytoplankton-derived POM of differing quality, served as inputs to sediment cores.

View Article and Find Full Text PDF

Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA-metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts.

View Article and Find Full Text PDF

To predict effects of global change on zooplankton populations, it is important to understand how present species adapt to temperature and how they respond to stressors interacting with temperature. Here, we ask if the calanoid copepod from the Baltic Sea can adapt to future climate warming. Populations were sampled at sites with different temperatures.

View Article and Find Full Text PDF

Compound-specific isotope analyses (CSIA) of fatty acids (FA) constitute a promising tool for tracing energy flows in food-webs. However, past applications of FA-specific carbon isotope analyses have been restricted to a relatively coarse food-source separation and mainly quantified dietary contributions from different habitats. Our aim was to evaluate the potential of FA-CSIA to provide high-resolution data on within-system energy flows using algae and zooplankton as model organisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how large-scale and local environmental factors influence the summer phytoplankton community in the Baltic Sea, essential for nutrient cycling and food webs.
  • Using dynamic factor analysis, researchers explored whether there are shared interannual variations in phytoplankton biomass across different regions of the Baltic Sea based on salinity and temperature.
  • Findings showed limited common trends in total phytoplankton biomass; however, specific classes like cryptophytes and cyanobacteria exhibited regional patterns linked to anomalies in biomass during certain years and suggested that local variability hinders the detection of broader trends.
View Article and Find Full Text PDF

Seal populations are recovering in many regions around the world and, consequently, they are increasingly interacting with fisheries. We used an Ecopath with Ecosim model for the offshore Central Baltic Sea to investigate the interactions between the changes in fish stocks and grey seal (Halichoerus grypus) population under different fishing and environmental scenarios for the twenty-first century. The assumed climate, eutrophication and cod (Gadus morhua) fisheries scenarios modified seal predation impacts on fish.

View Article and Find Full Text PDF

Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs.

View Article and Find Full Text PDF

Fish larvae abundances, diversity and trophic position across shallow seagrass, coral reef and open water habitats were examined to characterize their distribution in coastal East Africa. Larvae were identified to family and analysed for abundance differences between sites and habitats, trophic level using stable-isotope analysis and parental spawning mode. Abundances differed greatly between sites with the highest numbers of larvae occurring in the open-water and seagrass habitats.

View Article and Find Full Text PDF

Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems.

View Article and Find Full Text PDF

To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.

View Article and Find Full Text PDF

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column.

View Article and Find Full Text PDF

A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted.

View Article and Find Full Text PDF

Zooplankton blooms are a frequent phenomenon in tropical systems. However, drivers of bloom formation and the contribution of emerging resting eggs are largely unexplored. We investigated the dynamics and the triggers of rotifer blooms in African soda-lakes and assessed their impact on other trophic levels.

View Article and Find Full Text PDF