98%
921
2 minutes
20
Current smoking contributes to worsened asthma prognosis and more severe symptoms and limits the beneficial effects of corticosteroids. As the nasal epithelium can reflect smoking-induced changes in the lower airways, it is a relevant source to investigate changes in gene expression and DNA methylation. This study explores gene expression and DNA methylation changes in current and ex-smokers with asthma. Matched gene expression and epigenome-wide DNA methylation samples collected from nasal brushings of 55 patients enrolled in a clinical trial investigation of current and ex-smoker patients with asthma were analyzed. Differential gene expression and DNA methylation analyses were conducted comparing current smokers with ex-smokers. Expression quantitative trait methylation (eQTM) analysis was completed to explore smoking-relevant genes by CpG sites that differ between current and ex-smokers. To investigate the relevance of the smoking-associated DNA methylation changes for the lower airways, significant CpG sites were explored in bronchial biopsies from patients who had stopped smoking. A total of 809 genes and 18,814 CpG sites were differentially associated with current smoking in the nose. The -eQTM analysis uncovered 171 CpG sites with a methylation status associated with smoking-related gene expression, including , , , . The methylation status of CpG sites altered by current smoking reversed with 1 year of smoking cessation. We confirm that current smoking alters epigenetic patterns and affects gene expression in the nasal epithelium of patients with asthma, which is partially reversible in bronchial biopsies after smoking cessation. We demonstrate the ability to discern molecular changes in the nasal epithelium, presenting this as a tool in future investigations into disease-relevant effects of tobacco smoke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2020-0553OC | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFEur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDF