Involvement of LIMK2 in actin cytoskeleton remodeling during the definitive endoderm differentiation.

In Vitro Cell Dev Biol Anim

School of Basic Medical Sciences, Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, 646000, Sichuan Province, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

LIM kinases are involved in various cellular events such as migration, cycle, and differentiation, but whether they have a role in the specification of mammalian early endoderm remains unclear. In the present study, we found that depletion of LIMK2 severely inhibited the generation of definitive endoderm (DE) from human embryonic stem cells (hESCs) and promoted an early neuroectodermal fate. Upon the silencing of LIMK2 during the endodermal differentiation, the assembly of actin stress fibers was disturbed, and the phosphorylation of cofilin was decreased. In addition, knockdown of LIMK2 during DE differentiation also interfered the upregulation of epithelial-to-mesenchymal transition (EMT)-related genes and cell migration. Collectively, the results highlight that the serine/threonine kinase LIMK2, acting as a key regulator in actin remodeling, plays a critical role in endodermal lineage determination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-021-00582-6DOI Listing

Publication Analysis

Top Keywords

definitive endoderm
8
involvement limk2
4
limk2 actin
4
actin cytoskeleton
4
cytoskeleton remodeling
4
remodeling definitive
4
differentiation
4
endoderm differentiation
4
differentiation lim
4
lim kinases
4

Similar Publications

Generation of a biallelic NRAP-knockout mutant from a human iPSC line.

Stem Cell Res

September 2025

Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Electronic address:

Cardiomyopathies, a leading cause of mortality, are associated with dysfunctional intercalated discs, which connect neighbouring cardiomyocytes and ensure proper contractility. In human cardiac diseases, loss-of-function mutations of the intercalated disc-associated protein Nebulin-Related Anchoring Protein (NRAP) have been reported. NRAP plays a crucial role in myofibril assembly and mechanotransduction, however, its regulatory functions remain unclear.

View Article and Find Full Text PDF

Digital reconstruction of full embryos during early mouse organogenesis.

Cell

August 2025

Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and

Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.

View Article and Find Full Text PDF

TBX3 advances the developmental chromatin landscape toward the hepatic fate.

Dev Cell

June 2025

Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; Cell and Developmental Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada; School of

By mapping histone modifications in a human stem cell model of hepatic differentiation, we identified an enhancer landscape that is dynamic and stage specific, with many primed at the definitive endoderm stage. While hepatic enhancers gained active histone modifications, non-hepatic enhancers lost H3K4me1 after hepatic specification. T-box transcription factor 3 (TBX3) was found to bind to hepatic enhancers and promoters.

View Article and Find Full Text PDF

During gastrulation, dynamic interplay among cell signaling pathways dictates cell fate decisions. While extensive studies have elucidated their critical roles in morphological regulation, how these signals orchestrate the epigenome to confer developmental competence remains unclear. In this study, we demonstrate that H3K9me3-marked facultative heterochromatin domains undergo global reorganization during differentiation of human pluripotent stem cells into mesoderm and endoderm, which arise through epithelial-mesenchymal transition (EMT), but not into ectoderm, which retains epithelial state.

View Article and Find Full Text PDF

Morphology of the larval midgut of the longhorn beetle Rhytidodera bowringii White, 1853 (Coleoptera: Cerambycidae: Cerambycinae).

Protoplasma

September 2025

Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.

The midgut of insects originates from the endoderm. It is located in the central part of the digestive tract and serves as the primary site for chemical digestion and nutrient absorption. The larvae of Cerambycidae are the most destructive life stage.

View Article and Find Full Text PDF