Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy.

Int Rev Cell Mol Biol

Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumor microenvironment is a complex milieu that dictates the growth, invasion, and metastasis of cancer cells. Both cancer and stromal cells in the tumor tissue encounter and adapt to a variety of extracellular factors, and subsequently contribute and drive the progression of the disease to more advanced stages. As the disease progresses, a small population of cancer cells becomes more invasive through a complex process known as epithelial-mesenchymal transition, and nearby stromal cells assume a carcinoma associated fibroblast phenotype characterized by enhanced migration, cell contractility, and matrix secretion with the ability to reorganize extracellular matrices. As cells transition into more malignant phenotypes their biophysical properties, controlled by the organization of cytoskeletal proteins, are altered. Actin and its associated proteins are essential modulators and facilitators of these changes. As the cells respond to the cues in the microenvironment, actin driven mechanical forces inside and outside the cells also evolve. Recent advances in biophysical techniques have enabled us to probe these actin driven changes in cancer and stromal cells and demarcate their role in driving changes in the microenvironment. Understanding the underlying biophysical mechanisms that drive cancer progression could provide critical insight on novel therapeutic approaches in the fight against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ircmb.2020.09.005DOI Listing

Publication Analysis

Top Keywords

stromal cells
16
cancer stromal
12
cells
9
tumor microenvironment
8
cancer cells
8
actin driven
8
cancer
7
force balancing
4
balancing act-in
4
act-in tumor
4

Similar Publications

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF

A FLOATING ENDOMETRIAL ORGANOID MODEL RECAPITULATES EPITHELIAL-STROMAL CELL INTERACTIONS IN VITRO.

Exp Cell Res

September 2025

Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132, Genova, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy. Electronic address:

Organoids are 3D structures in which stem, progenitor and differentiated cells spontaneously assemble into structures resembling the original tissue. Endometrial organoids, developed from tissue fragments, are genetically stable and responsive to hormone stimulation acquiring a hallow lumen, secretory activity and apico-basal polarity. However, they show some limitations in mimicking the midluteal endometrium since they lack endothelial, immune, and stromal cells, thus providing limited information about epithelial-stromal interactions.

View Article and Find Full Text PDF

The CD39-CD73-adenosine axis: Master regulator of immune evasion and therapeutic target in pancreatic ductal adenocarcinoma.

Biochim Biophys Acta Rev Cancer

September 2025

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China; National Regional Medical Cente

Pancreatic ductal adenocarcinoma (PDAC) exhibits persistent resistance to immunotherapy, with a 5-year survival rate around 10 %. The CD39-CD73-adenosine axis emerges as a critical mediator of immune evasion in PDAC, generating pathologically elevated adenosine concentrations that systematically suppress anti-tumor immunity. This purinergic pathway operates through sequential ATP hydrolysis by CD39 and CD73 ectonucleotidases, producing adenosine that engages four G-protein-coupled receptors (A1, A2A, A2B, A3) to orchestrate comprehensive immunosuppression.

View Article and Find Full Text PDF