Week to week variability of pulmonary capillary blood volume and alveolar membrane diffusing capacity in patients with heart failure.

Respir Physiol Neurobiol

Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Alveolar-capillary membrane diffusing capacity for carbon monoxide (DMCO) and pulmonary capillary volume (Vcap) can be estimated by the multi-step Roughton and Foster (RF, original method from 1957) or the single-step NO-CO double diffusion technique (developed in the 1980s). The latter method implies inherent assumptions. We sought to determine which combination of the alveolar membrane diffusing capacity for nitric oxide (DMNO) to DMCO ratio, an specific conductance of the blood for NO (θ) and CO (θ) gave the lowest week-to-week variability in patients with heart failure.

Methods: 44 heart failure patients underwent DMCO and Vcap measurements on three occasions over a ten-week period using both RF and double dilution NO-CO techniques.

Results: When using the double diffusing method and applying θ = infinity, the smallest week-to-week coefficient of variation for DMCO was 10 %. Conversely, the RF method derived DMCO had a much greater week-to-week variability (2x higher coefficient of variation) than the DMCO derived via the NO-CO double dilution technique. The DMCO derived from the double diffusion technique most closely matched the DMCO from the RF method when θ = infinity and DMCO = DLNO/2.42. The Vcap measured week-to-week was unreliable regardless of the method or constants used.

Conclusions: In heart failure patients, the week-to-week DMCO variability was lowest when using the single-step NO-CO technique. DMCO obtained from double diffusion most closely matched the RF DMCO when DMCO/2.42 and θ = infinity. Vcap estimation was unreliable with either method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2021.103679DOI Listing

Publication Analysis

Top Keywords

membrane diffusing
12
diffusing capacity
12
heart failure
12
double diffusion
12
dmco
11
pulmonary capillary
8
alveolar membrane
8
patients heart
8
single-step no-co
8
no-co double
8

Similar Publications

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.

View Article and Find Full Text PDF

Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.

View Article and Find Full Text PDF

Visible Light-Driven Membrane-Bound Compartment for Precise Regulation of Enzyme Activity.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.

View Article and Find Full Text PDF