98%
921
2 minutes
20
Phenotypes associated with genetic variants can be altered by interactions with other genetic variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have been mapped on a global scale, but the environmental influence on the plasticity of genetic networks has not been examined systematically. To assess environmental rewiring of genetic networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast gene pairs for dynamic, differential interactions. Different conditions revealed novel differential interactions, which often uncovered functional connections between distantly related gene pairs. However, the majority of observed genetic interactions remained unchanged in different conditions, suggesting that the global yeast genetic interaction network is robust to environmental perturbation and captures the fundamental functional architecture of a eukaryotic cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132594 | PMC |
http://dx.doi.org/10.1126/science.abf8424 | DOI Listing |
BMC Biotechnol
September 2025
Botanical Garden, Ulm University, Hans-Krebs-Weg, 89081, Ulm, Germany.
J Biosci Bioeng
September 2025
Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
We have developed the methylotrophic yeast Ogataea minuta as a useful host for producing heterologous proteins. In this study, a double mutant that lacks the Prb1 protease and alcohol oxidase was generated and applied for heterologous protein production. Upon our optimization of the fermentation conditions, such as feeding of carbon and nitrogen sources and pH control, this mutant showed increased production of human serum albumin, resulting in a yield of approximately 7.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.
The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.
View Article and Find Full Text PDF