Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes mellitus is a chronic metabolic disorder with multiple complications, patients who receive metformin may have a simultaneous intake of herbal medicine containing rutaecarpine due to cardiovascular protection and hypolipidemic effects of rutaecarpine. There might be drug interactions between metformin and rutaecarpine. This study aimed to investigate the effects of rutaecarpine on the pharmacodynamics and pharmacokinetics of metformin in diabetic rats.The diabetic rat model was induced with high-fat diet and low dose streptozotocin. Metformin with or without rutaecarpine was administered by oral gavage for 42 days. Pharmacodynamics and pharmacokinetics parameters were evaluated.The pharmacodynamics results revealed that co-administration of rutaecarpine with metformin resulted in a remarkable reduction of serum glucose and lipid profiles in diabetic rats compared to metformin treated alone. The pharmacokinetics results showed that co-treatments of rutaecarpine with metformin did not affect the systemic exposure and renal distribution of metformin, but increased metformin concentration in liver. Furthermore, rutaecarpine increased Oct1-mediated metformin uptake into hepatocytes by upregulation of Oct1 expression in the liver.The above data indicate that rutaecarpine enhanced the anti-diabetic effect of metformin, which may be associated with the increased hepatic distribution of metformin through up-regulation of Oct1 in response to rutaecarpine.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00498254.2021.1926573DOI Listing

Publication Analysis

Top Keywords

metformin
13
distribution metformin
12
rutaecarpine
11
hepatic distribution
8
metformin up-regulation
8
up-regulation oct1
8
diabetic rats
8
effects rutaecarpine
8
metformin rutaecarpine
8
pharmacodynamics pharmacokinetics
8

Similar Publications

Introduction: This study examines the characteristics of adults with type 2 diabetes (T2D) who were not initially treated with an antihyperglycemic agent (AHA).

Methods: The analyses used Optum de-identified Market Clarity data from January 2013 through September 2023. The US study included nonpregnant adults with T2D who were continuously insured from 1 year prior through 5 years post diagnosis and did not fill a prescription for an AHA in the year after their initial T2D diagnosis.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that metformin-based combination therapy may offer better glycemic control and improved tolerability compared to diabetes monotherapy. Building on this, vitamin D was considered a potential adjunct to metformin for managing type 2 diabetes. Although vitamin D is primarily recognized for its role in calcium regulation, it also appears to influence glucose metabolism and other non-skeletal functions.

View Article and Find Full Text PDF

Aims: Population-based studies have consistently shown that individuals with diabetes secondary to chronic pancreatitis (pancreatic diabetes) have a high risk of hypoglycaemia. We aimed to investigate whether this risk has declined over recent years following the introduction of modern glucose-lowering medications.

Materials And Methods: In this Danish nationwide population-based cohort study, we included all adults with new-onset diabetes between 1998 and 2022 and classified them as having pancreatic diabetes, type 1, or type 2 diabetes.

View Article and Find Full Text PDF

Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.

View Article and Find Full Text PDF