Nano-encapsulation of hydroxytyrosol into formulated nanogels improves therapeutic effects against hepatic steatosis: An in vitro study.

Mater Sci Eng C Mater Biol Appl

Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy. Electronic address:

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials hold promise as a straightforward approach for enhancing the performance of bioactive compounds in several healthcare scenarios. Indeed, nanoencapsulation represents a valuable strategy to preserve the bioactives, maximizing their bioavailability. Here, a nanoencapsulation strategy for the treatment of nonalcoholic fatty liver disease (NAFLD) is presented. NAFLD represents the most common chronic liver disease in Western societies, and still lacks an effective therapy. Hydroxytyrosol (HT), a naturally occurring polyphenol, has been shown to protect against hepatic steatosis through its lipid-lowering, antioxidant and anti-inflammatory activities. However, the efficient delivery of HT to hepatocytes remains a crucial aspect: the design of smart nanogels appears as a promising tool to promote its intracellular uptake. In this paper, we disclose the synthesis of nanogel systems based on polyethylene glycol and polyethyleneimine which have been tested in an in vitro model of hepatic steatosis at two different concentrations (0.1 mg/mL and 0.5 mg/mL), taking advantage of high-content analysis tools. The proposed HT-loaded nanoscaffolds are non-toxic to cells, and their administration showed a significant decrease in the intracellular triglyceride levels, restoring cell viability and outperforming the results achievable with HT in its non-encapsulated form. Moreover, nanogels do not induce oxidative stress, thus demonstrating their biosafety. Overall, the formulated nanogel system achieves superior performance compared to conventional drug administration routes and hence represents a promising strategy for the management of NAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112080DOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
12
liver disease
8
nano-encapsulation hydroxytyrosol
4
hydroxytyrosol formulated
4
formulated nanogels
4
nanogels improves
4
improves therapeutic
4
therapeutic effects
4
effects hepatic
4
steatosis vitro
4

Similar Publications

Pharmacological modulation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) through dual GIP/GLP-1 receptor agonists, commonly used for diabetes and obesity, shows promise in reducing alcohol consumption. We applied drug-target Mendelian randomization (MR) using genetic variation at these loci to assess their long-term effects on problematic alcohol use (PAU), binge drinking, alcohol misuse classifications, liver health, and other substance use behaviors. Genetic proxies for lowered BMI, modeling the appetite-suppressing and weight-reducing effects of variants in both the GIPR and GLP1R loci ("GIPR/GLP1R"), were linked with reduced binge drinking in the primary (β = -0.

View Article and Find Full Text PDF

RNF128 regulates the adaptive metabolic response to fasting by modulating PPARα function.

Cell Death Differ

September 2025

Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.

Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.

View Article and Find Full Text PDF

Connecting the Dots: Hepatic Steatosis as a Central Player in the Choreography of the Liver-Cardiovascular-Kidney-Metabolic Syndrome.

Heart Lung Circ

September 2025

Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease and dietary intake characteristics in children and adolescents: A cross-sectional study.

Rev Gastroenterol Mex (Engl Ed)

September 2025

Facultad de Nutrición, Universidad Federal de Bahía (UFBA), Salvador, Bahía, Brazil.

Introduction And Aims: Metabolic dysfunction-associated steatotic disease (MASLD) is the most common cause of chronic liver disease in children and adolescents. The development of MASLD is associated with dietary habits, and dietary intake characteristics are a relevant risk factor. The aim of the present study was to analyze dietary intake characteristics in children and adolescents and study how diet varies in subjects with and without MASLD.

View Article and Find Full Text PDF