98%
921
2 minutes
20
Purpose: To develop and characterize an algorithm that mimics human expert visual assessment to quantitatively determine the quality of three-dimensional (3D) whole-heart MR images.
Materials And Methods: In this study, 3D whole-heart cardiac MRI scans from 424 participants (average age, 57 years ± 18 [standard deviation]; 66.5% men) were used to generate an image quality assessment algorithm. A deep convolutional neural network for image quality assessment (IQ-DCNN) was designed, trained, optimized, and cross-validated on a clinical database of 324 (training set) scans. On a separate test set (100 scans), two hypotheses were tested: that the algorithm can assess image quality in concordance with human expert assessment as assessed by human-machine correlation and intra- and interobserver agreement and that the IQ-DCNN algorithm may be used to monitor a compressed sensing reconstruction process where image quality progressively improves. Weighted κ values, agreement and disagreement counts, and Krippendorff α reliability coefficients were reported.
Results: Regression performance of the IQ-DCNN was within the range of human intra- and interobserver agreement and in very good agreement with the human expert ( = 0.78, κ = 0.67). The image quality assessment during compressed sensing reconstruction correlated with the cost function at each iteration and was successfully applied to rank the results in very good agreement with the human expert.
Conclusion: The proposed IQ-DCNN was trained to mimic expert visual image quality assessment of 3D whole-heart MR images. The results from the IQ-DCNN were in good agreement with human expert reading, and the network was capable of automatically comparing different reconstructed volumes.© RSNA, 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082371 | PMC |
http://dx.doi.org/10.1148/ryai.2020190123 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
Purpose: In children with Langerhans Cell Histiocytosis (LCH), FDG-PET/CT is used for staging and response assessment. Whole-body MRI (WB-MRI) can serve as an ionizing radiation-free alternative for repeated whole-body imaging. The aim of this study was to compare WB-MRI with FDG-PET/CT for staging and response assessment in pediatric LCH.
View Article and Find Full Text PDFMenopause
September 2025
Department of Speech Language Pathology and Audiology, Northeastern University, Boston, MA.
Importance And Objective: Voice changes during menopause affect patients' communication and quality of life. This narrative review aims to provide a comprehensive exploration of voice changes during menopause. It presents objective and subjective/symptomatic changes as well as treatment options for this population.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.
Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.
Eur J Ophthalmol
September 2025
vEyes NPO, vEyes Lab, Milo, Italy.
PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDF