Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mucormycosis is a life-threatening opportunistic infection caused by certain members of the fungal order Mucorales. This infection is associated with high mortality rate, which can reach nearly 100% depending on the underlying condition of the patient. Treatment of mucormycosis is challenging because these fungi are intrinsically resistant to most of the routinely used antifungal agents, such as most of the azoles. One possible mechanism of azole resistance is the drug efflux catalyzed by members of the ATP binding cassette (ABC) transporter superfamily. The pleiotropic drug resistance (PDR) transporter subfamily of ABC transporters is the most closely associated to drug resistance. The genome of encodes eight putative PDR-type transporters. In this study, transcription of the eight genes has been analyzed after azole treatment. Only the showed increased transcript level in response to all tested azoles. Deletion of this gene caused increased susceptibility to posaconazole, ravuconazole and isavuconazole and altered growth ability of the mutant. In the deletion mutant, transcript level of and significantly increased. Deletion of and was also done to create single and double knock out mutants for the three genes. After deletion of and , growth ability of the mutant strains decreased, while deletion of resulted in increased sensitivity against posaconazole, ravuconazole and isavuconazole. Our result suggests that the regulation of the eight genes is interconnected and and participates in the resistance of the fungus to posaconazole, ravuconazole and isavuconazole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8079984PMC
http://dx.doi.org/10.3389/fcimb.2021.660347DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
posaconazole ravuconazole
12
ravuconazole isavuconazole
12
pleiotropic drug
8
azole resistance
8
transcript level
8
growth ability
8
ability mutant
8
resistance
6
deletion
5

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Epidemiology, resistance profiles, and risk factors of multidrug- and carbapenem-resistant Serratia marcescens infections: a retrospective study of 242 cases.

BMC Infect Dis

September 2025

Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.

Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is associated with metabolic disorders such as insulin resistance and liver fat accumulation. However, the specific mediating role of liver-related metabolic indicators in this association has not been fully studied. The purpose of this study was to investigate the relationship between Metabolic Score for Insulin Resistance (METS-IR) and OSA, focusing on the mediating effects of liver fat percentage (PLF) and hepatic steatosis index (HSI).

View Article and Find Full Text PDF

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) represents a major cause of antimicrobial resistance-related morbidity and mortality. The recent emergence of highly fatal infections, caused by carbapenem-resistant PA, has called for novel antimicrobial therapies and strategies. In this study, we highlight the therapeutic potential of ε-poly-L-lysine (εPL), an antimicrobial polymer for treating extensively-and pan-drug-resistant-PA.

View Article and Find Full Text PDF