98%
921
2 minutes
20
Sevoflurane exposure in neonates induces long-term impairment of learning and memory; however, its effect on cognition in the later developmental period and the underlying mechanisms remain unclear. In the present study, we showed that multiple sevoflurane exposures impaired fear memory at long retention delays in neonatal (postnatal day 7) and preadolescent mice (postnatal day 22), but not in mice at older ages. After the fear memory test, expression of phosphorylated extracellular signaling-regulated kinase (p-ERK) and c-fos were elevated in the bed nucleus of the stria terminalis (BNST) and central amygdala, but not in the hippocampus or prefrontal cortex. The upregulation of p-ERK was restricted to populations of γ-aminobutyric acid (GABAergic) neurons and was inhibited by multiple sevoflurane exposures. Intra-BNST injection of ERK inhibitor also impaired fear memory at long retention delays. In contrast, intra-BNST injection of ERK agonist attenuated impaired fear memory caused by repeated sevoflurane exposures. Injection of sevoflurane in the BNST but not the caudate putamen impaired the fear memory at long retention delays in preadolescent mice. Finally, chemogenetic activation of BNST GABAergic neurons by designer receptors exclusively activated by designer drug (DREADD) reversed the impaired fear memory at long retention delays by multiple sevoflurane exposures. These findings suggest that multiple sevoflurane exposures impaired fear memory at long retention delays in preadolescent mice by suppressing the ERK signaling in GABAergic neurons in the BNST.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2021.108584 | DOI Listing |
Dev Psychobiol
September 2025
Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA.
Social buffering may reduce the persistent impacts of acute early life stress (aELS) and, thus, has important implications for anxiety- and trauma-related disorders. First, we assessed whether aELS would induce maladaptive fear incubation in adult mice, a PTSD-like phenotype. Overall, animals showed incubation of fear memory in adulthood, independent of aELS condition.
View Article and Find Full Text PDFLearn Mem
September 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
While cognitive function remains stable for majority of the lifespan, many functions sharply decline in later life. Women have higher rates of neurodegenerative diseases that involve memory loss, including Alzheimer's disease. This sex disparity may be due to longer life expectancies when compared to men; women outlive men by roughly 5 years globally.
View Article and Find Full Text PDFBackgroundNurses suffered an unprecedented number of potentially morally injurious events (PMIEs) during the COVID-19 pandemic. Their long-term associations with organizational well-being remain unknown.Research aimWe aimed to assess whether psychological basic need thwarting characteristic of nurses' episodic memories of PMIEs from the pandemic, either enacted (self-PMIEs) or passively witnessed (other-PMIEs), explained unique burnout and turnover intentions variance 2 years after the events.
View Article and Find Full Text PDFStudy Objectives: Brief sleep loss alters cognition and the activity and synaptic structures of both principal neurons and interneurons in hippocampus. However, although sleep-dependent coordination of activity between hippocampus and neocortex is essential for memory consolidation, much less is known about how sleep loss affects neocortical input to hippocampus, or excitatory-inhibitory balance within neocortical structures. We aimed to test how the synaptic structures of SST+ interneurons in lateral and medial entorhinal cortex (LEC and MEC), which are the major neocortical input to hippocampus, are affected by brief sleep disruption in the hours following learning.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline and significant disruptions in hippocampal neural networks, critically impacting memory and learning. Understanding the neural mechanisms underlying these impairments is essential for developing effective therapies. The 5xFAD mouse model, known for progressive neurodegeneration and cognitive deficits, provides a valuable platform for investigating associative learning and memory impairments related to AD.
View Article and Find Full Text PDF