Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Indium-based chalcogenide semiconductors have been served as the promising candidates for solar H evolution reaction, however, the related studies are still in its infancy and the enhancement of efficiency remains a grand challenge. Here, we report that the photocatalytic H evolution activity of quantized indium chalcogenide semiconductors could be dramatically aroused by the co-decoration of transition metal Zn and Cu. Different from the traditional metal ion doping strategies which only focus on narrowing bandgap for robust visible light harvesting, the conduction and valence band are coordinately regulated to realize the bandgap narrowing and the raising of thermodynamic driving force for proton reduction, simultaneously. Therefore, the as-prepared noble metal-free Cu-ZnInS quantum dots (QDs) exhibits extraordinary activity for photocatalytic H evolution. Under optimal conditions, the Cu-ZnInS QDs could produce H with the rate of 144.4 μmol h mg, 480-fold and 6-fold higher than that of pristine InS QDs and Cu-doped InS QDs counterparts respectively, which is even comparable with the state-of-the-art cadmium chalcogenides QDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146827 | PMC |
http://dx.doi.org/10.3390/nano11051115 | DOI Listing |