98%
921
2 minutes
20
Background: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable.
Methods: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms.
Results: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion.
Conclusions: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072630 | PMC |
http://dx.doi.org/10.3390/ijms22084217 | DOI Listing |
Biochem Soc Trans
September 2025
Department of Biochemistry, McGill University, Montréal, QC, Canada.
The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.
View Article and Find Full Text PDFFront Genet
August 2025
Medical School, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder characterized by muscle weakness, atrophy and myotonia, with multi-system involvement. Recent studies have highlighted the pathological heterogeneity within the CNS of DM1 patients, particularly significant changes in spinal transcriptome expression and alternative splicing. In this study, we conducted a comprehensive transcriptome analysis of the spinal cord in the muscle-specific DM1 mouse model and their wild-type controls across different life stages: young, adult and old age.
View Article and Find Full Text PDFJ Thorac Oncol
September 2025
Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan. Electronic address:
Cell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDF