98%
921
2 minutes
20
Gamma oscillations are physiological phenomena that reflect perception and cognition, and involve parvalbumin-positive γ-aminobutyric acid-ergic interneuron function. The auditory steady-state response (ASSR) is the most robust index for gamma oscillations, and it is impaired in patients with neuropsychiatric disorders such as schizophrenia and autism. Although ASSR reduction is known to vary in terms of frequency and time, the neural mechanisms are poorly understood. We obtained high-density electrocorticography recordings from a wide area of the cortex in 8 patients with refractory epilepsy. In an ASSR paradigm, click sounds were presented at frequencies of 20, 30, 40, 60, 80, 120, and 160 Hz. We performed time-frequency analyses and analyzed intertrial coherence, event-related spectral perturbation, and high-gamma oscillations. We demonstrate that the ASSR is globally distributed among the temporal, parietal, and frontal cortices. The ASSR was composed of time-dependent neural subcircuits differing in frequency tuning. Importantly, the frequency tuning characteristics of the late-latency ASSR varied between the temporal/frontal and parietal cortex, suggestive of differentiation along parallel auditory pathways. This large-scale survey of the cortical ASSR could serve as a foundation for future studies of the ASSR in patients with neuropsychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408476 | PMC |
http://dx.doi.org/10.1093/cercor/bhab103 | DOI Listing |
Neuroscience
September 2025
Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.
View Article and Find Full Text PDFWhole-brain models are valuable tools for understanding brain dynamics in health and disease by enabling the testing of causal mechanisms and identification of therapeutic targets through dynamic simulations. Among these models, biophysically inspired neural mass models have been widely used to simulate electrophysiological recordings, such as MEG and EEG. However, traditional models face limitations, including susceptibility to hyperexcitation, which constrains their ability to capture the full richness of neural dynamics.
View Article and Find Full Text PDFGamma oscillations (30-100 Hz) have long been theorized to play a key role in sensory processing and attention by coordinating neural firing across distributed neurons. Gamma oscillations can be generated internally by neural circuits during attention or exogenously by stimuli that turn on and off at gamma frequencies. However, it remains unknown if driving gamma activity via exogenous sensory stimulation affects attention.
View Article and Find Full Text PDFPLoS One
September 2025
Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC), Italy.
Background: Children with cerebral palsy (CP) commonly face gross motor function impairments and manual dexterity deficits, significantly affecting their activity level and independence and, ultimately, quality of life. Rehabilitation often targets improving manual dexterity and activity levels, but standard therapies have limited efficacy. Hence, exploring novel methods to enhance upper limb functionality is crucial.
View Article and Find Full Text PDFPediatr Neurol
August 2025
Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
Background: Tourette syndrome (TS) and attention-deficit/hyperactivity disorder (ADHD) often co-occur and are linked to emotional and behavioral difficulties. However, their shared and distinct neural underpinnings, particularly in terms of functional connectivity, remain unclear. Here, we assessed how functional connectivity differs across TS and ADHD as well as its association with emotional and behavioral difficulties.
View Article and Find Full Text PDF