Metallobiochemistry of ultratrace levels of bismuth in the rat II. Interaction of Bi with tissue, intracellular and molecular components.

J Trace Elem Med Biol

Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy. Electronic address:

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Knowledge on Bi metabolism in laboratory animals refers to studies at "extreme" exposures, i.e. pharmacologically relevant high-doses (mg kg b.w.) in relation to its medical use, or infinitesimal doses (pg kgb.w.) concerning radiobiology protection and radiotherapeutic purposes. There are no specific studies on metabolic patterns of environmental exposure doses (ultratrace level, μg kg b.w.), becoming in this context Bi a "heavy metal fallen into oblivion". We previously reported the results of the metabolic fate of ultratrace levels of Bi in the blood of rats [1]. In reference to the same study here we report the results of the retention and tissue binding of Bi with intracellular and molecular components.

Methods: Animals were intraperitoneally injected with 0.8 μg Bi kg b.w. as Bi(NO), alone or in combination with Fe for the radiolabeling of iron proteins. The use of Bi radiotracer allowed the determination of Bi down to pg fg in biological fluids, tissues, subcellular fractions, and biochemical components isolated by differential centrifugation, size exclusion chromatography, solvent extraction, precipitation, immunoprecipitation and dialysis.

Main Findings: At 24 h post injection the kidney contained by far the highest Bi concentration (10 ng g wt.w.) followed by the thymus, spleen, liver, thyroid, trachea, femur, lung, adrenal gland, stomach, duodenum and pancreas (0.1 to 1.3 ng g wt.w.). Brain and testis showed smaller but consistently significant concentrations of the element (0.03 ng g wt.w). Urine was the predominant route of excretion. Intracellularly, liver, kidney, spleen, testis, and brain cytosols displayed the highest percentages (35%-58%) of Bi of homogenates. Liver and testis nuclei were the organelles with the highest Bi content (24 % and 27 %). However, when the recovered Bi of the liver was recorded as percent of total recovered Bi divided by percent of total recovered protein the lysosomes showed the highest relative specific activity than in other fractions. In the brain subcellular fractions Bi was incorporated by neuro-structures with the protein and not lipidic fraction of the myelin retaining 18 % of Bi of the total homogenate. After the liver intra-subcellular fractionation: (i) 65 % of the nuclear Bi was associated with the protein fraction of the nuclear membranes and 35 % with the bulk chromatin bound to non-histone and DNA fractions; (ii) about 50 % of the mitochondrial Bi was associated with inner and outer membranes being the other half recovered in the intramitochondrial matrix; (iii) in microsomes Bi showed a high affinity (close to 90 %) for the membranous components (rough and smooth membranes); (iv) In the liver cytosol three pools of Bi-binding proteins (molecular size > 300 kDa, 70 kDa and 10 kDa) were observed with ferritin and metallothionein-like protein identified as Bi-binding biomolecules. Three similar protein pools were also observed in the kidney cytosol. However, the amount of Bi, calculated in percent of the total cytosolic Bi, were significantly different compared to the corresponding pools of the liver cytosol.

Conclusions: At the best of our knowledge the present paper represents the first in vivo study, on the basis of an environmental toxicology approach, aiming at describing retention and binding of Bi in the rat at tissue, intracellular and molecular levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2021.126752DOI Listing

Publication Analysis

Top Keywords

intracellular molecular
12
percent total
12
ultratrace levels
8
tissue intracellular
8
subcellular fractions
8
total recovered
8
liver
7
protein
5
metallobiochemistry ultratrace
4
levels bismuth
4

Similar Publications

PACAP versus CGRP in migraine: From mouse models to clinical translation.

Cephalalgia

September 2025

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.

Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Form and function in biological filaments: a physicist's review.

Philos Trans A Math Phys Eng Sci

September 2025

Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK.

Nature uses elongated shapes and filaments to build stable structures, generate motion and allow complex geometric interactions. In this review, we examine the role of biological filaments across different length scales. From the molecular scale, where cytoskeletal filaments provide a robust but dynamic cellular scaffolding, over the scale of cellular appendages like cilia and flagella, to the scale of filamentous microorganisms like cyanobacteria, among the most successful genera on Earth, and even to the scale of elongated animals like worms and snakes, whose motility modes inspire robotic analogues.

View Article and Find Full Text PDF

Paraptosis is a distinct form of programmed cell death characterized by cytoplasmic vacuolization, mitochondrial swelling, and endoplasmic reticulum (ER) dilation, offering an alternative to apoptosis for therapeutic applications. In this study, we identified a hemicyanine derivative that is a potent paraptosis inducer in two cancer cell lines. This compound triggers hallmark paraptotic features, including ER swelling, mitochondrial morphological changes, increased superoxide production, and caspase-independent cell death.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF