98%
921
2 minutes
20
A systematic understanding of the dynamics of surface water resources and terrestrial water storage (TWS) is extremely important for human survival in Central Asia (CA) and maintaining the balance of regional ecosystems. Although several remote sensing products have been used to map surface water, the spatial resolution of some of them (hundreds of meters) is not sufficient to identify small surface water bodies, with monitoring data only being available for a few years or less. Thus, long-term continuous monitoring of surface water dynamics has not yet been achieved. To address this, we used all available Landsat images and the adjacent-years interpolation method to describe the dynamics of surface water in CA with a 30-m spatial resolution during 1990-2019. Subsequently, based on the multiple stepwise regression model, the climatic changes and human activity drivers affecting the surface water were systematically assessed. The permanent surface water areas (PSWA) of downstream countries with water scarcity decreased over time. The PSWA of Kazakhstan continues to decline at a maximum rate of 1189 km/a. Additionally, human activities represented by population and reservoir areas are the dominant drivers affecting surface water resources in CA. The relationship between TWS and PSWA in CA and the constraints on social and economic development provided by the available water resources are discussed. The findings demonstrate that more than one-third of the croplands in CA are suffering from declining SWAs and TWS. The water crisis in CA has intensified, and the spatial mismatch between water and land resources is expected to remain one of the biggest challenges for future social and economic development in CA. Our dataset and findings provide high-precision surface water dynamics data that could be valuable for mitigating the water crisis in CA and provide a current scientific reference for achieving the United Nations' Sustainable Development Goals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.147193 | DOI Listing |
Langmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.
An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDF