Diffusion Tensor Imaging of the Spinal Cord.

Magn Reson Imaging Clin N Am

Department of Medical Imaging, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Med

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord often is regarded as one of the last territories in the central nervous system where diffusion tensor imaging (DTI) can be used to probe white matter architecture. This article reviews current progress in spinal cord DTI, starting with anatomic properties and technical challenges that make spinal cord DTI a difficult task. Several possibilities offered by advanced pulse sequences that might overcome the difficulties are addressed, with associated trade-offs and limitations. Potential clinical assistance also is discussed in various spinal cord pathologies, such as myelopathy due to external compression, spinal cord tumors, acute ischemia, traumatic injury, and so forth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mric.2021.02.002DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
diffusion tensor
8
tensor imaging
8
cord dti
8
spinal
6
cord
6
imaging spinal
4
cord spinal
4
cord regarded
4
regarded territories
4

Similar Publications

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in an array of debilitating, sometimes permanent-and at times life-threatening-motor, sensory, and autonomic deficits. A broad range of therapies have been tested pre-clinically, and there has been a significant acceleration in recent years of clinical translation of potential treatments. However, it is widely appreciated among scientists and clinical professionals alike that there likely is no "silver bullet" (single treatment) that will result in complete functional restoration after SCI.

View Article and Find Full Text PDF

Botanical Nanovesicles Boost Mesenchymal Stem Cell Therapy: Next-Gen Advanced Therapy Medicinal Products for Spinal Cord Injury.

Tissue Eng Part B Rev

September 2025

Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.

The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.

View Article and Find Full Text PDF

Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.

View Article and Find Full Text PDF

Syringomyelia is a common and heritable disorder in Cavalier King Charles Spaniels (CKCS), characterised by fluid accumulation within the spinal cord that may result in pain and neurological dysfunction. The prevalence of syringomyelia in CKCS in Australia has not previously been reported. The goal of this study was to assess the prevalence and severity of syringomyelia in magnetic resonance imaging (MRI)-screened breeding CKCS in New South Wales, Australia, from 2008 to 2024, and to evaluate changes over time.

View Article and Find Full Text PDF