98%
921
2 minutes
20
Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient's emotions and in monitoring stress levels in real-time. Due to the noisy and non-linear nature of the EEG signal, it is still difficult to understand emotions and can generate large feature vectors. In this article, we have proposed an efficient spatial feature extraction and feature selection method with a short processing time. The raw EEG signal is first divided into a smaller set of eigenmode functions called (IMF) using the empirical model-based decomposition proposed in our work, known as intensive multivariate empirical mode decomposition (iMEMD). The Spatio-temporal analysis is performed with Complex Continuous Wavelet Transform (CCWT) to collect all the information in the time and frequency domains. The multiple model extraction method uses three deep neural networks (DNNs) to extract features and dissect them together to have a combined feature vector. To overcome the computational curse, we propose a method of differential entropy and mutual information, which further reduces feature size by selecting high-quality features and pooling the k-means results to produce less dimensional qualitative feature vectors. The system seems complex, but once the network is trained with this model, real-time application testing and validation with good classification performance is fast. The proposed method for selecting attributes for benchmarking is validated with two publicly available data sets, SEED, and DEAP. This method is less expensive to calculate than more modern sentiment recognition methods, provides real-time sentiment analysis, and offers good classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057947 | PMC |
http://dx.doi.org/10.1007/s00530-021-00782-w | DOI Listing |
PLoS One
September 2025
NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and Institute of Ophthalmology University College London, London, United Kingdom.
Objectives: To describe the research principles and cohort characteristics of the multi-disciplinary Project HERCULES, an innovative model of safe high-volume outpatient eye-care service for patients with stable chronic eye diseases. Results and analyses of the workstreams within Project HERCULES will be reported elsewhere. The rationale was to improve eye-care capacity in the National Health Service (NHS) in England through the creation of technician-delivered monitoring in a large retail-unit in a London shopping-centre, with remote asynchronous review of results by clinicians (named Eye-Testing and Review through Asynchronous Clinic (Eye-TRAC)).
View Article and Find Full Text PDFPLoS One
September 2025
School of Design and Art, Hunan University, Changsha, Hunan, China.
This study addresses the limitations of traditional interior space design, particularly the timeliness and uniqueness of solutions, by proposing an optimized design framework that integrates a two-stage deep learning network with a single-sample-driven mechanism. In the first stage, the framework employs a Transformer network to extract multi-dimensional features (such as spatial layout, color distribution, furniture style, etc.) from input space images, generating an initial feature vector.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, Osun State University, Osogbo, Nigeria.
Probabilistic Random Forest is an extension of the traditional Random Forest machine learning algorithm that is one of the frequently used machine learning algorithms employed for species distribution modeling. However, with the use of complex dataset for predicting the presence or absence of the species, It is essential that feature extraction is important to generate optimal prediction that can affect the model accuracy and AUC score of the model simulation. In this paper, we integrated the Genetic Algorithm Optimization technique, which is popular for its excellent feature extraction technique, to enhance the predictive performance of the PRF Model.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran.
Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).
View Article and Find Full Text PDF