98%
921
2 minutes
20
Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056795 | PMC |
http://dx.doi.org/10.1038/s41380-021-01105-1 | DOI Listing |
Metab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
Background: Affective disorders represent a major global health burden. Animal models are widely used for modeling brain disorders and neuroactive drug discovery. A novel powerful tool in translational neuroscience research, zebrafish provide multiple behavioral assays relevant to anxiety-like and depression-related conditions (including despair-like behavior, a common feature in depression).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan. Electronic address:
Amylin aggregation and the resulting fibrotic toxicity are associated with the pathogenesis of type 2 diabetes mellitus (T2DM). This study evaluated the protective effects of rosmarinic acid (RA) against amylin-induced toxicity in a zebrafish model. Healthy zebrafish embryos from cell stages 1-8 were microinjected with a mixture of 50 μM amylin and 20 μM thioflavin-T (ThT) to induce amylin aggregation and fluorescently label fibril deposition.
View Article and Find Full Text PDFJ Drug Target
September 2025
Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.
View Article and Find Full Text PDFZool Res
September 2025
Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China.
Social hierarchies are central to the organizational structure of group-living species, shaping individual physiology, behavior, and social interactions. Dopaminergic (DA) systems, particularly within the ventral tegmental area (VTA) and dorsal raphe nucleus (DR), have been linked to motivation and competitive behaviors, yet their region-specific contributions to social dominance remain insufficiently defined. This study investigated the role of VTA and DR DA neurons in regulating social dominance in sexually naïve male C57BL/6J mice.
View Article and Find Full Text PDF