Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Antireflective performance is critical for most optical devices, such as the efficient solar energy utilization in photovoltaic cells of an aerospace craft and optical displays of scientific precise equipment. Therein, outstanding broad-band antireflection is one of the most crucial properties for antireflection films (ARFs). Unfortunately, it is still a challenging work to realize perfect "broader-band" antireflection because both the low refractive indices materials and time-consuming nanotexturing technologies are required in the fabricating process. Even in this case, a broader-band and flexible ARF with hierarchical structures is successfully developed, which is inspired by butterfly wing scales. First, the butterfly wings surface is treated with acid and stuck on a clean glass. Now, all the scales on the wings will form a strong adhesion with the glass substrate. Then, the wings are removed and the scales are left on the glass slide. Now the backside of scales is facing outward, the backside structures of the scales are coincidentally used as the template. Finally, the structure is replicated and the ARF with a controllable thickness is successfully fabricated by rotating PDMS on the biological template. In this work, the bionic ARFs realize the transmission of nearly 90% and more than 90% in the visible light and infrared region. It enhanced transmission to 13% under standard illumination compared with flat PDMS films of the same thickness. Furthermore, the ARF is flexible enough that it could bend nearly 180° to meet the special antireflection requirements in some extreme conditions. It is expected that this bioinspired AR film could revolutionize the technologies of broader-band antireflective materials and impact numerous applications from glass displays to optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c01352 | DOI Listing |