Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Species from the Trichophyton benhamiae complex are mostly zoophilic dermatophytes which cause inflammatory dermatophytosis in animals and humans worldwide.

Objectives: This study was purposed to (a) to identify 169 reference and clinical dermatophyte strains from the T benhamiae complex species by molecular method and adhering to the newest taxonomy in the complex (b) to evaluate the in vitro antifungal susceptibility profile of these strains against eight common and new antifungal agents that may be used for the treatment of dermatophytosis.

Methods: All isolates, mainly originated from Europe but also from Iran, Japan and USA, were subjected to ITS-rDNA sequencing. The in vitro antifungal susceptibility profiles of eight common and new antifungal drugs against the isolates were determined by CLSI M38-A2 protocol and according to microdilution method.

Results: Based on the ITS-rDNA sequencing, T benhamiae was the dominant species (n = 102), followed by T europaeum (n = 29), T erinacei (n = 23), T japonicum (n = 10), Trichophyton sp (n = 4) and T eriotrephon (n = 1). MIC ranges across all isolates were as follows: luliconazole: 0.0002-0.002 µg/ml, terbinafine: 0.008-0.125 µg/ml, efinaconazole: 0.008-0.125 µg/ml, ciclopirox olamine: 0.03-0.5 µg/ml, itraconazole: 0.06-2 µg/ml, griseofulvin: 0.25-4 µg/ml, amorolfine hydrochloride: 0.125-4 µg/ml and tavaborole: 1-16 µg/ml.

Conclusion: Luliconazole, efinaconazole and terbinafine were the most potent antifungals against T benhamiae complex isolates, regardless of the geographic locations where strains were isolated. These data might help dermatologists to develop effective therapies for successful treatment of infections due to T benhamiae complex species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/myc.13287DOI Listing

Publication Analysis

Top Keywords

vitro antifungal
12
antifungal susceptibility
12
t benhamiae complex
12
trichophyton benhamiae
8
benhamiae complex
8
complex isolates
8
complex species
8
common antifungal
8
its-rdna sequencing
8
complex
6

Similar Publications

Background: Malassezia genus includes lipodependent commensal yeasts of humans and animals' skin and mucous membranes. It can cause dermatological pathologies, and azoles are mainly used for treatment. However, in vitro susceptibility testing has shown decreased sensitivity to these antifungals.

View Article and Find Full Text PDF

Invasive Candidiasis infections are a clinical challenge, with limited effective therapeutic agents and increasing resistance. The discovery of new antifungal agents is urgently required. Here, we developed a new series of 2-methyl-1,4-naphthoquinone (Menadione) Tethered to 1H-1,2,3-triazolyl-selenoester in good yields, which exhibit antifungal potential activity against Candida species.

View Article and Find Full Text PDF

Trichophyton rubrum, a dermatophyte, demonstrates a notable ability to form mature biofilms on skin and associated surfaces, strengthening its resistance to antifungal agents. This characteristic poses intricate challenges in dermatological research and therapeutic strategies, underscoring the need for innovative approaches to effectively manage fungal infections. This work assessed the impact of the anti-biofilm enzymes, i.

View Article and Find Full Text PDF

The emergence of severe resistance issues in plant pathogenic fungi poses a significant threat to the global quality and safety of crops. In this study, 36 novel derivatives featuring a 5,6,7,8-tetrahydroquinazolin structure were designed and synthesized for the first time. These 36 target compounds were subjected to tests against five fungal species.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF