Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making.

Neuron

Sainsbury Wellcome Centre, University College London, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. Electronic address:

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How sensory evidence is transformed across multiple brain regions to influence behavior remains poorly understood. We trained mice in a visual change detection task designed to separate the covert antecedents of choices from activity associated with their execution. Wide-field calcium imaging across the dorsal cortex revealed fundamentally different dynamics of activity underlying these processes. Although signals related to execution of choice were widespread, fluctuations in sensory evidence in the absence of overt motor responses triggered a confined activity cascade, beginning with transient modulation of visual cortex and followed by sustained recruitment of the secondary and primary motor cortex. Activation of the motor cortex by sensory evidence was modulated by animals' expectation of when the stimulus was likely to change. These results reveal distinct activation timescales of specific cortical areas by sensory evidence during decision-making and show that recruitment of the motor cortex depends on the interaction of sensory evidence and temporal expectation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186564PMC
http://dx.doi.org/10.1016/j.neuron.2021.03.031DOI Listing

Publication Analysis

Top Keywords

sensory evidence
24
motor cortex
12
interaction sensory
8
evidence temporal
8
temporal expectation
8
sensory
6
evidence
6
cortex
5
mesoscale cortical
4
cortical dynamics
4

Similar Publications

Individually foraging ants use egocentric views as a dominant navigation strategy for learning and retracing routes. Evidence suggests that route retracing can be achieved by algorithms which use views as 'visual compasses', where individuals choose the heading that leads to the most familiar visual scene when compared to route memories. However, such a mechanism does not naturally lead to route approach, and alternative strategies are required to enable convergence when off-route and for correcting on-route divergence.

View Article and Find Full Text PDF

Cortical networks with multiple interneuron types generate oscillatory patterns during predictive coding.

PLoS Comput Biol

September 2025

Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.

Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).

View Article and Find Full Text PDF

Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.

View Article and Find Full Text PDF

Human-like malformations in anole lizards: Potential cases of "hopeful monsters" resembling chameleon morphology.

J Anat

September 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.

Vertebrates exhibit remarkable morphological diversity, with the head representing an exceptionally complex anatomical structure shaped by adaptations to feeding ecology, brain size, and sensory organ specialization. Proper fusion of facial prominences and the coordinated growth of the skull and brain are essential for normal craniofacial development in vertebrates, including humans. Disruptions in these processes, whether due to gene mutations or external factors, can result in craniofacial malformations.

View Article and Find Full Text PDF

Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).

View Article and Find Full Text PDF