Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Pharmacogenomics describes the link between gene variations (polymorphisms) and drug responses. In view of the implementation of precision medicine in personalized healthcare, pharmacogenetic tests have recently been introduced in the clinical practice. However, the translational aspects of such tests have been limited due to the lack of robust population-based evidence.
Materials: In this paper we present a novel pharmacogenetic panel (iDNA Genomics-PGx-CNS or PGx-CNS), consisting of 24 single nucleotide polymorphisms (SNPs) on 13 genes involved in the signaling or/and the metabolism of 28 approved drugs currently administered to treat diseases of the Central Nervous System (CNS). We have tested the PGx-CNS panel on 501 patient-derived DNA samples from a southeastern European population and applied biostatistical analyses on the pharmacogenetic associations involving drug selection, dosing and the risk of adverse drug events (ADEs).
Results: Results reveal the occurrences of each SNP in the sample and a strong correlation with the European population. Nonlinear principal component analysis strongly indicates co-occurrences of certain variants. The metabolization efficiency (poor, intermediate, extensive, ultra-rapid) and the frequency of clinical useful pharmacogenetic, associations in the population (drug relevance), are also described, along with four exemplar clinical cases illustrating the strong potential of the PGx-CNS panel, as a companion diagnostic assay. It is noted that pharmacogenetic associations involving copy number variations (CNVs) or the HLA gene were not included in this analysis.
Conclusions: Overall, results illustrate that the PGx-CNS panel is a valuable tool supporting therapeutic medical decisions, urging its broad clinical implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048316 | PMC |
http://dx.doi.org/10.1186/s12967-021-02816-3 | DOI Listing |