98%
921
2 minutes
20
Protein phosphatase 2A (PP2A) activity is critical for maintaining normal physiological cellular functions. PP2A is inhibited by endogenous inhibitor proteins in several pathological conditions including cancer. A PP2A inhibitor protein, ARPP-19, has recently been connected to several human cancer types. Accordingly, the knowledge about ARPP-19-PP2A inhibition mechanism is crucial for the understanding the disease development and the therapeutic targeting of ARPP-19-PP2A. Here, we show the first structural characterization of ARPP-19, and its splice variant ARPP-16 using NMR spectroscopy, and SAXS. The results reveal that both ARPP proteins are intrinsically disordered but contain transient secondary structure elements. The interaction mechanism of ARPP-16/19 with PP2A was investigated using microscale thermophoresis and NMR spectroscopy. Our results suggest that ARPP-PP2A A-subunit interaction is mediated by linear motif and has modest affinity whereas, the interaction of ARPPs with B56-subunit is weak and transient. Like many IDPs, ARPPs are promiscuous binders that transiently interact with PP2A A- and B56 subunits using multiple interaction motifs. In summary, our results provide a good starting point for future studies and development of therapeutics that block ARPP-PP2A interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032985 | PMC |
http://dx.doi.org/10.3389/fmolb.2021.650881 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:
Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.
View Article and Find Full Text PDFWater Res
September 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:
Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.
View Article and Find Full Text PDFAnnu Rev Entomol
September 2025
2Department of Entomology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA; email:
Nutritional symbioses with microorganisms have profoundly shaped the evolutionary success of ants, enabling them to overcome dietary limitations and thrive across diverse ecological niches and trophic levels. These interactions are particularly crucial for ants with specialized diets, where microbial symbionts compensate for dietary imbalances by contributing to nitrogen metabolism, vitamin supplementation, and the catabolism of plant fibers and proteins. This review synthesizes recent advances in our understanding of ant-microbe symbioses, focusing on diversity, functional roles in host nutrition, and mechanisms of transmission of symbiotic microorganisms.
View Article and Find Full Text PDFAnnu Rev Entomol
September 2025
2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:
Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.
View Article and Find Full Text PDF