98%
921
2 minutes
20
Many transcranial Doppler ultrasonography devices estimate the mean flow velocity (FVm) by using the traditional formula (FVsystolic + 2 × FVdiastolic)/3 instead of a more accurate formula calculating it as the time integral of the current flow velocities divided by the integration period. We retrospectively analyzed flow velocity and intracranial pressure signals containing plateau waves (transient intracranial hypertension), which were collected from 14 patients with a traumatic brain injury. The differences in FVm and its derivative pulsatility index (PI) calculated with the two different methods were determined. We found that during plateau waves, when the intracranial pressure (ICP) rose, the error in FVm and PI increased significantly from the baseline to the plateau (from 4.6 ± 2.4 to 9.8 ± 4.9 cm/s, P < 0.05). Similarly, the error in PI also increased during plateau waves (from 0.11 ± 0.07 to 0.44 ± 0.24, P < 0.005). These effects were most likely due to changes in the pulse waveform during increased ICP, which alter the relationship between systolic, diastolic, and mean flow velocities. If a change in the mean ICP is expected, then calculation of FVm with the traditional formula is not recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-59436-7_5 | DOI Listing |
PLoS One
September 2025
Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Samsun University, Samsun, Turkiye.
Electrochemical (EC) grooving minimises tool wear and residual stress when machining hard-to-cut tube materials. This study examines how the number of passes and tool feed direction affect material removal rate (MRR) and removed area (RA) in Stellite 21 tubes. Two feed strategies were tested: Unidirectional Electrolyte Flow (UEF), where the tool moves entirely opposite to the electrolyte flow; and Hybrid Electrolyte Flow (HEF), where the tool first moves against and then with the flow direction.
View Article and Find Full Text PDFClin Auton Res
September 2025
Faculty of Medicine, Department of Medicine, Ageing and Age-Associated Disorders Research Group, Division of Geriatric Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
Background: Orthostatic hypotension (OH) is prevalent in older adults and is often associated with falls. However, the presence or absence of symptoms in OH may be mediated by cerebral autoregulation, which helps maintain cerebral perfusion during blood pressure fluctuations.
Methods: We recruited 40 older adults (aged ≥ 55 years) from the Malaysian Elders Longitudinal Research (MELoR) cohort.
Interv Neuroradiol
September 2025
Department of Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany.
PurposeTo evaluate the potential of Photon-Counting Detector CT Angiography (PCD-CTA) for the assessment of carotid and subclavian artery stents compared to digital subtraction angiography (DSA) and Duplex ultrasound (DUS).MethodsThis study is a single-center, retrospective analysis of consecutive patients treated with a stent for high grade stenosis of the extra-cranial carotid and the subclavian artery between April 2023 and May 2024. Polyenergetic images (PE), iodine and virtual monoenergetic images were performed at different keV levels (40 and 80) and with two body vascular reconstruction kernels (Bv56 and 72) with and without iterative metal artifact reduction.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Cardiovascular Medicine, Fengxian Central Hospital, Shanghai, China.
Background: Arterial compliance is an independent predictor of diastolic dysfunction. Invasive catheterization can accurately reflect diastolic function. However, studies on the invasive assessment of diastolic function are currently limited.
View Article and Find Full Text PDFNPJ Biomed Innov
September 2025
Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA USA.
Glioblastoma is characterized by aggressive infiltration into surrounding brain tissue, hindering complete surgical resection and contributing to poor patient outcomes. Identifying tumor-specific invasion patterns is essential for advancing our understanding of glioblastoma progression and improving surgical and radiotherapeutic strategies. Here, we leverage in vivo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to noninvasively quantify interstitial fluid velocity, direction, and diffusion within and around glioblastomas.
View Article and Find Full Text PDF