98%
921
2 minutes
20
Mesenchymal stem cell-derived exosomes (MSC-exos), with its inherent capacity to modulate cellular behavior, are emerging as a novel cell-free therapy for bone regeneration. Herein, focusing on practical applying problems, the osteoinductivity of MSC-exos produced by different stem cell sources (rBMSCs/rASCs) and culture conditions (osteoinductive/common) were systematically compared to screen out an optimized osteogenic exosome (BMSC-OI-exo). Via bioinformatic analyses by miRNA microarray and in vitro pathway verification by gene silencing and miRNA transfection, we first revealed that the osteoinductivity of BMSC-OI-exo was attributed to multi-component exosomal miRNAs (let-7a-5p, let-7c-5p, miR-328a-5p and miR-31a-5p). These miRNAs targeted Acvr2b/Acvr1 and regulated the competitive balance of Bmpr2/Acvr2b toward Bmpr-elicited Smad1/5/9 phosphorylation. On these bases, lyophilized delivery of BMSC-OI-exo on hierarchical mesoporous bioactive glass (MBG) scaffold was developed to realize bioactivity maintenance and sustained release by entrapment in the surface microporosity of the scaffold. In a rat cranial defect model, the loading of BMSC-OI-exo efficiently enhanced the bone forming capacity of the scaffold and induced rapid initiation of bone regeneration. This paper could provide empirical bases of MSC-exo-based therapy for bone regeneration and theoretical bases of MSC-exo-induced osteogenesis mechanism. The BMSC-OI-exo-loaded MBG scaffold developed here represented a promising bone repairing strategy for future clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.120718 | DOI Listing |
Regen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.
View Article and Find Full Text PDFiScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFJ Dent Res
September 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
The diabetic microenvironment intensifies M1-type macrophage-mediated inflammation and impairs bone regeneration. Glycophagy-a process of glycogen-selective autophagy that degrades intracellular glycogen into glucose-is essential for maintaining glucose homeostasis under metabolic stress. The role of glycophagy in regulating M1-type polarization remains unclear.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechanical Engineering Department KVGIT Jaipur, Rajasthan, India.
Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.
View Article and Find Full Text PDF