A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture.

Environ Res

Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam; School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia. Electronic address: choepengleo@t

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon capture can be implemented at a large scale only if the CO selective materials are abundantly available at low cost. Since the sustainable requirement also elevated, the low-cost and biodegradable cellulosic materials are developed into CO selective adsorbent and membranes recently. The applications of cellulose, cellulosic derivatives and nanocellulose as CO selective adsorbents and membranes are reviewed here. The fabrication and modification strategies are discussed besides comparing their CO separation performance. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) isolated from cellulose possess a big surface area for mechanical enhancement and a great number of hydroxyl groups for modification. Nanocellulose aerogels with the large surface area were chemically modified to improve their selectivity towards CO. Even with the reduction of surface area, amino-functionalized nanocellulose aerogels exhibited the satisfactory chemisorption of CO with a capacity of more than 2 mmol/g was recorded. Inorganic fillers such as silica, zeolite and MOFs were further incorporated into nanocellulose aerogels to enhance the physisorption of CO by increasing the surface area. Although CO adsorbents developed from cellulose and cellulose derivatives were less reported, their applications as the building blocks of CO separation membranes had been long studied. Cellulose acetate membranes were commercialized for CO separation, but their separation performance could be further improved with silane or inorganic filler. CNCs and CNFs enhanced the CO selectivity and permeance through polyvinyl alcohol coating on membranes, but only CNF membranes incorporated with MOFs were explored so far. Although some of these membranes surpassed the upper-bound of Robeson plot, their stability should be further investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111100DOI Listing

Publication Analysis

Top Keywords

surface area
16
nanocellulose aerogels
12
cellulose
9
applications cellulose
8
cellulose cellulose
8
cellulose derivatives
8
derivatives nanocellulose
8
carbon capture
8
separation performance
8
membranes
7

Similar Publications

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.

View Article and Find Full Text PDF

Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF