Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2021.103103DOI Listing

Publication Analysis

Top Keywords

dna damage
12
cell cycle
12
cyclin-dependent kinase
8
kinase inhibitors
8
inhibitors cdkis
8
damage response
8
signaling pathways
8
dna
5
cell
5
cdkis dna
4

Similar Publications

Hematopoietic malignancies (HM) represent the most common form of pediatric cancer with lymphoid malignancies being the predominant subtype in kids. The majority of lymphoid malignancies are proposed to occur sporadically with environmental, infectious and inflammatory triggers impacting oncogenesis in ways that are not yet fully understood. With the increased adoption of germline genetic testing in children with cancer, genetic predisposition to lymphoid malignancies is now recognized as an important aspect of clinical care and research.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite.

View Article and Find Full Text PDF

Circ_IGF2BP1/miR-885-3p/TK1 axis regulates the malignant phenotype and chemotherapeutic resistance of lung adenocarcinoma cells via DNA damage and apoptosis.

Int J Biol Macromol

September 2025

Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China; The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China. Electronic address: kexixian@z

Chemotherapy resistance in lung adenocarcinoma (LUAD) limits clinical efficacy. In this study, we first established circ_IGF2BP1 knockdown models in LUAD cells (A549 and H1299). Using dual-luciferase reporter assays, functional analyses, and miR-885-3p rescue experiments, we demonstrated that circ_IGF2BP1 promotes LUAD cell proliferation, migration, and invasion by directly targeting miR-885-3p.

View Article and Find Full Text PDF